千寻

道路很长, 开始了就别停下!

0%

导读

相比于数据分片方案的逐渐成熟,集性能、透明化、自动化、强一致、并能适用于各种应用场景于一体的分布式事务解决方案则显得凤毛麟角。基于两、三阶段提交的分布式事务的性能瓶颈以及柔性事务的业务改造问题,使得分布式事务至今依然是令架构师们头疼的问题。

Apache ShardingSphere(Incubating)不失时机的在2019年初,提供了一个刚柔并济的一体化分布式事务解决方案。如果您的应用系统正在受到这方面的困扰,不妨倒上一杯咖啡,花十分钟阅读此文,说不定会有些收获呢?

背景

数据库事务需要满足ACID(原子性、一致性、隔离性、持久性)4个特性。

  • 原子性(Atomicity)指事务作为整体来执行,要么全部执行,要么全不执行。

  • 一致性(Consistency)指事务应确保数据从一个一致的状态转变为另一个一致的状态。

  • 隔离性(Isolation)指多个事务并发执行时,一个事务的执行不应影响其他事务的执行。

  • 持久性(Durability)指已提交的事务修改数据会被持久保存。

在单一数据节点中,事务仅限于对单一数据库资源的访问控制,称之为本地事务。几乎所有的成熟的关系型数据库都提供了对本地事务的原生支持。 但是在基于微服务的分布式应用环境下,越来越多的应用场景要求对多个服务的访问及其相对应的多个数据库资源能纳入到同一个事务当中,分布式事务应运而生。

关系型数据库虽然对本地事务提供了完美的ACID原生支持。 但在分布式的场景下,它却成为系统性能的桎梏。如何让数据库在分布式场景下满足ACID的特性或找寻相应的替代方案,是分布式事务的重点工作。

★本地事务★

在不开启任何分布式事务管理器的前提下,让每个数据节点各自管理自己的事务。 它们之间没有协调以及通信的能力,也并不互相知晓其他数据节点事务的成功与否。 本地事务在性能方面无任何损耗,但在强一致性以及最终一致性方面则力不从心。

★两阶段提交★

XA协议最早的分布式事务模型是由X/Open国际联盟提出的X/Open Distributed Transaction Processing(DTP)模型,简称XA协议。

基于XA协议实现的分布式事务对业务侵入很小。 它最大的优势就是对使用方透明,用户可以像使用本地事务一样使用基于XA协议的分布式事务。 XA协议能够严格保障事务ACID特性。

严格保障事务ACID特性是一把双刃剑。 事务执行在过程中需要将所需资源全部锁定,它更加适用于执行时间确定的短事务。 对于长事务来说,整个事务进行期间对数据的独占,将导致对热点数据依赖的业务系统并发性能衰退明显。 因此,在高并发的性能至上场景中,基于XA协议两阶段提交类型的分布式事务并不是最佳选择。

★柔性事务★

如果将实现了ACID的事务要素的事务称为刚性事务的话,那么基于BASE事务要素的事务则称为柔性事务。 BASE是基本可用、柔性状态和最终一致性这3个要素的缩写。

  • 基本可用(Basically Available)保证分布式事务参与方不一定同时在线。

  • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉。

  • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。

在ACID事务中对一致性和隔离性的要求很高,在事务执行过程中,必须将所有的资源占用。 柔性事务的理念则是通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性和隔离性的要求,只要求当整个事务最终结束的时候,数据是一致的。而在事务执行期间,任何读取操作得到的数据都有可能被改变。这种弱一致性的设计可以用来换取系统吞吐量的提升。

  • Saga是典型的柔性事务管理器。Sagas这个概念来源于三十多年前的一篇数据库论文[http://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf] ,一个Saga事务是一个有多个短时事务组成的长时的事务。 在分布式事务场景下,我们把一个Saga分布式事务看做是一个由多个本地事务组成的事务,每个本地事务都有一个与之对应的补偿事务。在Saga事务的执行过程中,如果某一步执行出现异常,Saga事务会被终止,同时会调用对应的补偿事务完成相关的恢复操作,这样保证Saga相关的本地事务要么都是执行成功,要么通过补偿恢复成为事务执行之前的状态。

  • TCC(Try-Cancel/Confirm实现)是另一种柔性事务的协调实现。TCC借助两阶段提交协议提供了一种比较完美的恢复方式。在TCC方式下,cancel补偿显然是在第二阶段需要执行业务逻辑来取消第一阶段产生的后果。Try是在第一阶段执行相关的业务操作,完成相关业务资源的占用,例如预先分配票务资源,或者检查并刷新用户账户信用额度。 在取消阶段释放相关的业务资源,例如释放预先分配的票务资源或者恢复之前占用的用户信用额度。 那我们为什么还要加入确认操作呢?这需要从业务资源的使用生命周期来入手。在try过程中,我们只是占用的业务资源,相关的执行操作只是出于待定状态,只有在确认操作执行完毕之后,业务资源才能真正被确认。

基于ACID的强一致性事务和基于BASE的最终一致性事务都不是银弹,只有在最适合的场景中才能发挥它们的最大长处。可通过下表详细对比它们之间的区别,以帮助开发者进行技术选型。

/ 本地事务 两阶段提交 柔性事务
业务改造 实现相关接口
一致性 不支持 支持 最终一致
隔离性 不支持 支持 业务方保证
并发性能 无影响 严重衰退 略微衰退
适合场景 业务方处理不一致 短事务 & 低并发 长事务 & 高并发

★挑战★

由于应用的场景不同,需要开发者能够合理的在性能与功能之间权衡各种分布式事务。

两阶段提交与柔性事务的API和功能并不完全相同,在它们之间并不能做到自由的透明切换。在开发决策阶段,就不得不在两阶段提交的事务和柔性事务之间抉择,使得设计和开发成本被大幅增加。

基于XA的两阶段提交事务使用相对简单,但是无法很好的应对互联网的高并发或复杂系统的长事务场景;柔性事务则需要开发者对应用进行改造,接入成本非常高,并且需要开发者自行实现资源占用和反向补偿。

ShardingSphere的分布式事务

整合现有的成熟事务方案,为本地事务、两阶段提交和柔性事务提供统一的分布式事务接口,并弥补当前方案的不足,提供一站式的分布式事务解决方案是Apache ShardingSphere(Incubating)分布式事务模块的主要设计目标。该模块的名称是sharding-transaction。可以用刚柔并济、自动化和透明化这3个关键词来概括sharding-transaction模块的设计理念和功能呈现。

  1. 刚柔并济
    同时提供基于XA的两阶段提交事务与基于Saga的柔性事务解决方案,并且能够一起配合使用。

  2. 自动化
    XA事务和Saga事务都通过自动化的方式完成,使用方无感知。XA事务无需使用XADataSource接口以及JTA事务管理器;Saga事务也无需用户自行实现补偿接口。

  3. 透明化
    在Apache ShardingSphere(Incubating)的两个接入端——Sharding-JDBC和Sharding-Proxy中,分别提供了面向本地事务接口的封装。使用方完全可以将被ShardingSphere管理的水平分片的多个数据源当成一个数据库使用,通过本地事务API即可实现完全的分布式事务的能力。用户可以透明地在应用中任意切换事务类型。

sharding-transaction模块由sharding-transaction-core,sharding-transaction-2pc和sharding-transaction-base这3个子模块组成。

  1. sharding-transaction-core: 提供了面向使用者的API与面向开发者的SPI。

  2. sharding-transaction-2pc:
    两阶段提交事务父模块。目前只有sharding-transaction-xa模块,提供了XA协议的支持。未来会引入更多的基于两阶段提交的事务类型,如:percolator,参见:
    [https://storage.googleapis.com/pub-tools-public-publication-data/pdf/36726.pdf]。

  3. sharding-transaction-base:
    柔性事务父模块。目前只有sharding-transaction-saga模块,采用Apache ServiceComb Saga Actuator提供的Saga执行器提供柔性事务支持,并在其基础之上提供了反向SQL和快照的能力,并由此实现自动逆向补偿功能。

下面将对ShardingSphere的XA和Saga事务模块的功能亮点进行说明。

★XA事务——三大XA事务管理器共护航★

成熟的XA事务管理器非常多,Apache ShardingSphere(Incubating)并未选择重新造轮子,而是寄望于打造一个生态,将合适的轮子有机地整合在一起,提供成熟稳定的分布式事务处理能力。它的主要功能如下:

  1. 复用成熟引擎,自动切换底层实现
    Sharding-transaction-xa模块进一步定义了面向XA事务管理器开发者的SPI,开发者仅需实现SPI定义的接口,即可自动加入至Apache ShardingSphere(Incubating)生态,作为其XA事务管理器。

Apache ShardingSphere(Incubating)官方目前实现了基于Atomikos和Bitronix的SPI,并且邀请了Radhat JBoss的XA事务引擎Narayana [https://github.com/jbosstm/narayana] 开发团队实现了JBoss的SPI。用户可以自行的在Atomikos,Bitronix和Narayana间选择自己喜欢的XA事务管理器。

受限于Apache基金会项目License的原因,Apache ShardingSphere(Incubating)将采用Apache协议的Atomikos作为其默认实现,关于基于LGPL协议的Bitronix和基于LGPL协议的Narayana,用户可以自行引用相应jar包至项目的classpath即可。

如果这3个XA事务管理器仍未满足用户需求,开发者则可通过扩展SPI来实现定制化的XA事务管理器。

  1. 数据源透明化自动接入

Apache ShardingSphere(Incubating)能够自动将XADataSource作为数据库驱动的数据源接入XA事务管理器。而针对于使用DataSource作为数据库驱动的应用,用户也无需改变其编码以及配置,Apache ShardingSphere(Incubating)通过自动适配的方式,在中间件内部将其转化为支持XA协议的XADataSource和XAConnection,并将其作为XA资源注册到底层的XA事务管理器中。

XA模块的架构图如下:

★Saga事务—跨越柔性事务限制,实现自动补偿★

在柔性事务中,每一次对数据库的更新操作都将数据真正的提交至数据库,以达到高并发系统中最佳资源释放的效果。当数据出现问题需要回滚时,通过柔性事务管理器保持数据的最终一致性以及隔离行为。Apache ShardingSphere(Incubating)采用Apache ServiceComb Saga Actuator [https://github.com/apache/servicecomb-saga-actuator] 作为Saga事务管理器,它的主要功能如下:

  1. 自动反向补偿

Saga定义了一个事务中的每个子事务都有一个与之对应的反向补偿操作。由Saga事务管理器根据程序执行结果生成一张有向无环图,并在需要执行回滚操作时,根据该图依次按照相反的顺序调用反向补偿操作。Saga事务管理器只用于控制何时重试,合适补偿,并不负责补偿的内容,补偿的具体操作需要由开发者自行提供。

另一个柔性事务管理器TCC与Saga理念相似,均需要由使用方开发者提供补偿操作。除了补偿,TCC还提供了资源占用的能力,但也需要由使用方开发者提供资源占用操作。虽然功能上强于Saga,但TCC的使用成本较之Saga也更高。

由使用方开发者提供资源占用和补偿操作,这就使得柔性事务的解决方案始终难于大规模的在业务系统中落地。并且由于业务系统的介入,使得柔性事务框架的使用范畴始终定位于服务而非数据库,数据库能够直接使用的成熟的柔性事务管理器目前还不多见。

Apache ShardingSphere(Incubating)采用反向SQL技术,将对数据库进行更新操作的SQL自动生成数据快照以及反向SQL,并交由Apache ServiceComb Saga Actuator执行,使用方则无需再关注如何实现补偿方法,将柔性事务管理器的应用范畴成功的定位回了事务的本源——数据库层面。

对于能够处理复杂查询语句的Apache ShardingSphere(Incubating)SQL解析引擎来说,插入/更新/删除等语句解析难度则要小很多;ShardingSphere是通过拦截用户执行的SQL进行数据分片的,所有的SQL都能够被其直接管控。因此将反向SQL和补偿能力与Apache ServiceComb Saga Actuator相结合,达到了自动化柔性事务的能力,是数据分片和柔性事务结合的典范。

Saga模块的架构图如下:

★接入端—面向原生事务接口的分布式事务★

Apache ShardingSphere(Incubating)的目标是像使用一个数据库一样使用分片后的多数据库,在事务模块,这个目标依然适用。无论被ShardingSphere所管理的数据库如何分片,面向开发者的逻辑数据库始终只有一个。因此,ShardingSphere的事务接口依然是原生的本地事务接口,即JDBC的java.sql.Connection的setAutoCommit, commit和rollback方法;以及面向数据库事务管理器的begin, commit和rollback语句。在用户调用原生本地事务接口的同时,ShardingSphere则通过sharding-transaction模块保证后端分片数据库的分布式事务。

由于原生的事务接口并不支持事务类型,因此ShardingSphere提供了3种方式供使用者切换事务类型。

  1. 通过SCTL(sharding-ctl,即ShardingSphere提供的数据库管理命令)切换当前事务类型。以SQL执行的方式输入即可,适用于Sharding-JDBC和Sharding-Proxy。例如:SCTL:SET TRANSACTION_TYPE=BASE

  2. 通过Threadlocal切换当前事务类型,适用于Sharding-JDBC。例如:TransactionTypeHolder.set (TransactionType.XA)

  3. 通过元注解,并与Spring配合使用切换当前事务类型,适用于Sharding-JDBC和Sharding-Proxy。例如:@ShardingTransactionType (TransactionType.BASE)

线路规划

分布式事务模块在github的开发分支 [https://github.com/apache/incubator-shardingsphere] 已经基本可用,将随着4.0.0.M1的版本发布,这也将是ShardingSphere进入Apache基金会孵化器之后的第一个发布版本。分布式事务是数据分片以及微服务架构的重要组成部分,也是Apache ShardingSphere(Incubating)的关注重心,发布之后仍将继续完善,线路规划如下。

★事务隔离引擎★

在SQL反向引擎稳定之后,柔性事务的重点将放在打造事务隔离之上。由于事务的隔离性并非Saga所规划的范畴,因此Apache ShardingSphere(Incubating)会在Saga之外将其完善,与SQL反向引擎一起作为整个柔性事务的组成部分。

Apache ShardingSphere(Incubating)将通过乐观锁、悲观锁、无隔离等几种策略,做到读已提交、读未提交、可重复读以及序列化等隔离级别的一一支持。并通过多版本快照进一步提升系统的并发度。

★对外XA事务接口★

Apache ShardingSphere(Incubating)的两个接入端Sharding-JDBC和Sharding-Proxy在支持自身的内部事务问题之后,将提供融入与其他数据源一起作为被JTA等分布式事务管理器管理的能力。

实现对外XA事务接口之后,Sharding-JDBC的DataSource将实现XADataSource接口,提供与其他数据源共同加入到一个XA事务的可能;Sharding-Proxy的数据库协议也将实现基于XA的两阶段提交协议;使其可以成为被XA所加载的资源管理器。

除此之外,ShardingSphere还会实现XA协议的recovery部分,即在事务处理器出现崩溃的情况时,可以有能力提供in-doubt transactions来实现事务恢复。

总结

Apache ShardingSphere(Incubating)提供的分布式事务能力可以通过下表总结一下,读者不妨与文章开始时的表格对比一下,看看ShardingSphere的分布式事务模块所带来的变化。

/ 本地事务 两阶段提交 柔性事务
业务改造
一致性 不支持 支持 最终一致
隔离性 不支持 支持 规划中
并发性能 无影响 严重衰退 略微衰退
适合场景 业务方处理不一致 短事务 & 低并发 长事务 & 高并发

在高速发展的Apache ShardingSphere(Incubating)中,分布式事务的雏形已成,我们会尽快将其打造为可用的产品,并持续为社区提供优质解决方案。对于一篇不算短的文章,阅读完此文的您,相信一定对这个领域有一定兴趣。不妨先尝试一下,是否满足您的预期?或者干脆加入我们的社区,一起打造更完善的分布式事务方案。

垃圾收集算法

标记-清除算法

最基础的收集算法是“标记-清除”(Mark-Sweep)算法,分两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。

阅读全文 »

简述

Java内存模型(Java Memory Model,JMM)是java虚拟机规范定义的,用来屏蔽掉java程序在各种不同的硬件和操作系统对内存的访问的差异,这样就可以实现java程序在各种不同的平台上都能达到内存访问的一致性。

阅读全文 »

在高并发模型中,无是面对物理机SMP系统模型,还是面对像JVM的虚拟机多线程并发内存模型,指令重排(编译器、运行时)和内存屏障都是非常重要的概念,因此,搞清楚这些概念和原理很重要。否则,你很难搞清楚:

  • 哪些操作是在并发先绝对安全的?
  • 哪些是相对安全的?
  • 哪些并发同步手段性能最低?
  • valotile的二层语义分别是什么?

一、什么是重排序

请先看这样一段代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public class PossibleReordering {
static int x = 0, y = 0;
static int a = 0, b = 0;

public static void main(String[] args) throws InterruptedException {
Thread one = new Thread(new Runnable() {
public void run() {
a = 1;
x = b;
}
});

Thread other = new Thread(new Runnable() {
public void run() {
b = 1;
y = a;
}
});
one.start();
other.start();
one.join();
other.join();
System.out.println(“(” + x + “,” + y + “)”);
}

很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。

然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。值得注意的是,a=1和x=b这两个语句的赋值操作的顺序被颠倒了,或者说,发生了指令“重排序”(reordering)。(事实上,输出了这一结果,并不代表一定发生了指令重排序,内存可见性问题也会导致这样的输出,详见后文)

对重排序现象不太了解的开发者可能会对这种现象感到吃惊,但是,笔者开发环境下做的一个小实验证实了这一结果。

实验代码是构造一个循环,反复执行上面的实例代码,直到出现a=0且b=0的输出为止。实验结果说明,循环执行到第13830次时输出了(0,0)。

大多数现代微处理器都会采用将指令乱序执行(out-of-order execution,简称OoOE或OOE)的方法,在条件允许的情况下,直接运行当前有能力立即执行的后续指令,避开获取下一条指令所需数据时造成的等待3。通过乱序执行的技术,处理器可以大大提高执行效率。
除了处理器,常见的Java运行时环境的JIT编译器也会做指令重排序操作,即生成的机器指令与字节码指令顺序不一致。

二、as-if-serial语义

As-if-serial语义的意思是,所有的动作(Action)都可以为了优化而被重排序,但是必须保证它们重排序后的结果和程序代码本身的应有结果是一致的。Java编译器、运行时和处理器都会保证单线程下的as-if-serial语义。
比如,为了保证这一语义,重排序不会发生在有数据依赖的操作之中。

1
2
3
int a = 1;
int b = 2;
int c = a + b;

将上面的代码编译成Java字节码或生成机器指令,可视为展开成了以下几步动作(实际可能会省略或添加某些步骤)。

  1. 对a赋值1
  2. 对b赋值2
  3. 取a的值
  4. 取b的值
  5. 将取到两个值相加后存入c

在上面5个动作中,

  • 动作1可能会和动作2、4重排序,
  • 动作2可能会和动作1、3重排序,
  • 动作3可能会和动作2、4重排序,
  • 动作4可能会和1、3重排序。
  • 但动作1和动作3、5不能重排序。
  • 动作2和动作4、5不能重排序。

因为它们之间存在数据依赖关系,一旦重排,as-if-serial语义便无法保证。

为保证as-if-serial语义,Java异常处理机制也会为重排序做一些特殊处理。例如在下面的代码中,y = 0 / 0可能会被重排序在x = 2之前执行,为了保证最终不致于输出x = 1的错误结果,JIT在重排序时会在catch语句中插入错误代偿代码,将x赋值为2,将程序恢复到发生异常时应有的状态。这种做法的确将异常捕捉的逻辑变得复杂了,但是JIT的优化的原则是,尽力优化正常运行下的代码逻辑,哪怕以catch块逻辑变得复杂为代价,毕竟,进入catch块内是一种“异常”情况的表现。

三、内存访问重排序与内存可见性

计算机系统中,为了尽可能地避免处理器访问主内存的时间开销,处理器大多会利用缓存(cache)以提高性能。其模型如下图所示。

在这种模型下会存在一个现象,即缓存中的数据与主内存的数据并不是实时同步的,各CPU(或CPU核心)间缓存的数据也不是实时同步的。这导致在同一个时间点,各CPU所看到同一内存地址的数据的值可能是不一致的。从程序的视角来看,就是在同一个时间点,各个线程所看到的共享变量的值可能是不一致的。

有的观点会将这种现象也视为重排序的一种,命名为“内存系统重排序”。因为这种内存可见性问题造成的结果就好像是内存访问指令发生了重排序一样。

这种内存可见性问题也会导致章节一中示例代码即便在没有发生指令重排序的情况下的执行结果也还是(0, 0)。

四、内存访问重排序与Java内存模型

Java的目标是成为一门平台无关性的语言,即Write once, run anywhere. 但是不同硬件环境下指令重排序的规则不尽相同。例如,x86下运行正常的Java程序在IA64下就可能得到非预期的运行结果。为此,JSR-1337制定了Java内存模型(Java Memory Model, JMM),旨在提供一个统一的可参考的规范,屏蔽平台差异性。从Java 5开始,Java内存模型成为Java语言规范的一部分。

根据Java内存模型中的规定,可以总结出以下几条happens-before规则。Happens-before的前后两个操作不会被重排序且后者对前者的内存可见。

  • 程序次序法则:线程中的每个动作A都happens-before于该线程中的每一个动作B,其中,在程序中,所有的动作B都能出现在A之后。
  • 监视器锁法则:对一个监视器锁的解锁 happens-before于每一个后续对同一监视器锁的加锁。
  • volatile变量法则:对volatile域的写入操作happens-before于每一个后续对同一个域的读写操作。
  • 线程启动法则:在一个线程里,对Thread.start的调用会happens-before于每个启动线程的动作。
  • 线程终结法则:线程中的任何动作都happens-before于其他线程检测到这个线程已经终结、或者从Thread.join调用中成功返回,或Thread.isAlive返回false。
  • 中断法则:一个线程调用另一个线程的interrupt happens-before于被中断的线程发现中断。
  • 终结法则:一个对象的构造函数的结束happens-before于这个对象finalizer的开始。
  • 传递性:如果A happens-before于B,且B happens-before于C,则A happens-before于C

Happens-before关系只是对Java内存模型的一种近似性的描述,它并不够严谨,但便于日常程序开发参考使用,关于更严谨的Java内存模型的定义和描述,请阅读JSR-133原文或Java语言规范章节17.4。

除此之外,Java内存模型对volatile和final的语义做了扩展。对volatile语义的扩展保证了volatile变量在一些情况下不会重排序,volatile的64位变量double和long的读取和赋值操作都是原子的。对final语义的扩展保证一个对象的构建方法结束前,所有final成员变量都必须完成初始化(的前提是没有this引用溢出)。

Java内存模型关于重排序的规定,总结后如下表所示。

表中“第二项操作”的含义是指,第一项操作之后的所有指定操作。如,普通读不能与其之后的所有volatile写重排序。另外,JMM也规定了上述volatile和同步块的规则尽适用于存在多线程访问的情景。例如,若编译器(这里的编译器也包括JIT,下同)证明了一个volatile变量只能被单线程访问,那么就可能会把它做为普通变量来处理。
留白的单元格代表允许在不违反Java基本语义的情况下重排序。例如,编译器不会对对同一内存地址的读和写操作重排序,但是允许对不同地址的读和写操作重排序。

除此之外,为了保证final的新增语义。JSR-133对于final变量的重排序也做了限制。

  • 构建方法内部的final成员变量的存储,并且,假如final成员变量本身是一个引用的话,这个final成员变量可以引用到的一切存储操作,都不能与构建方法外的将当期构建对象赋值于多线程共享变量的存储操作重排序。例如对于如下语句

    x.finalField = v; … ;构建方法边界sharedRef = x;
    v.afield = 1; x.finalField = v; … ; 构建方法边界sharedRef = x;
    这两条语句中,构建方法边界前后的指令都不能重排序。

  • 初始读取共享对象与初始读取该共享对象的final成员变量之间不能重排序。例如对于如下语句
    x = sharedRef; … ; i = x.finalField;
    前后两句语句之间不会发生重排序。由于这两句语句有数据依赖关系,编译器本身就不会对它们重排序,但确实有一些处理器会对这种情况重排序,因此特别制定了这一规则。

五、内存屏障

内存屏障(Memory Barrier,或有时叫做内存栅栏,Memory Fence)是一种CPU指令,用于控制特定条件下的重排序和内存可见性问题。Java编译器也会根据内存屏障的规则禁止重排序。

内存屏障可以被分为以下几种类型

  • LoadLoad屏障:对于这样的语句Load1; LoadLoad; Load2,在Load2及后续读取操作要读取的数据被访问前,保证Load1要读取的数据被读取完毕。
  • StoreStore屏障:对于这样的语句Store1; StoreStore; Store2,在Store2及后续写入操作执行前,保证Store1的写入操作对其它处理器可见。
  • LoadStore屏障:对于这样的语句Load1; LoadStore; Store2,在Store2及后续写入操作被刷出前,保证Load1要读取的数据被读取完毕。
  • StoreLoad屏障:对于这样的语句Store1; StoreLoad; Load2,在Load2及后续所有读取操作执行前,保证Store1的写入对所有处理器可见。它的开销是四种屏障中最大的。 在大多数处理器的实现中,这个屏障是个万能屏障,兼具其它三种内存屏障的功能。

 有的处理器的重排序规则较严,无需内存屏障也能很好的工作,Java编译器会在这种情况下不放置内存屏障。
 为了实现上一章中讨论的JSR-133的规定,Java编译器会这样使用内存屏障。

为了保证final字段的特殊语义,也会在下面的语句加入内存屏障。
x.finalField = v; StoreStore; sharedRef = x;

六、Intel 64/IA-32架构下的内存访问重排序

Intel 64和IA-32是我们较常用的硬件环境,相对于其它处理器而言,它们拥有一种较严格的重排序规则。Pentium 4以后的Intel 64或IA-32处理的重排序规则如下。9

在单CPU系统中

  • 读操作不与其它读操作重排序。
  • 写操作不与其之前的写操作重排序。
  • 写内存操作不与其它写操作重排序,但有以下几种例外
  • CLFLUSH的写操作
  • 带有non-temporal move指令(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD)的streaming写入。
  • 字符串操作
  • 读操作可能会与其之前的写不同位置的写操作重排序,但不与其之前的写相同位置的写操作重排序。
  • 读和写操作不与I/O指令,带锁的指令或序列化指令重排序。
  • 读操作不能重排序到LFENCE和MFENCE之前。
  • 写操作不能重排序到LFENCE、SFENCE和MFENCE之前。
  • LFENCE不能重排序到读操作之前。
  • SFENCE不能重排序到写之前。
  • MFENCE不能重排序到读或写操作之前。

在多处理器系统中

  • 各自处理器内部遵循单处理器的重排序规则。
  • 单处理器的写操作对所有处理器可见是同时的。
  • 各自处理器的写操作不会重排序。
  • 内存重排序遵守因果性(causality)(内存重排序遵守传递可见性)。
  • 任何写操作对于执行这些写操作的处理器之外的处理器来看都是一致的。
  • 带锁指令是顺序执行的。

值得注意的是,对于Java编译器而言,Intel 64/IA-32架构下处理器不需要LoadLoad、LoadStore、StoreStore屏障,因为不会发生需要这三种屏障的重排序。

七、一例Intel 64/IA-32架构下的代码性能优化

现在有这样一个场景,一个容器可以放一个东西,容器支持create方法来创建一个新的东西并放到容器里,支持get方法取到这个容器里的东西。我们可以较容易地写出下面的代码。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class Container {
public static class SomeThing {
private int status;

public SomeThing() {
status = 1;
}

public int getStatus() {
return status;
}
}

private SomeThing object;

public void create() {
object = new SomeThing();
}

public SomeThing get() {
while (object == null) {
Thread.yield(); //不加这句话可能会在此出现无限循环
}
return object;
}
}

在单线程场景下,这段代码执行起来是没有问题的。但是在多线程并发场景下,由不同的线程create和get东西,这段代码是有问题的。问题的原因与普通的双重检查锁定单例模式(Double Checked Locking, DCL)10类似,即SomeThing的构建与将指向构建中的SomeThing引用赋值到object变量这两者可能会发生重排序。导致get中返回一个正被构建中的不完整的SomeThing对象实例。为了解决这一问题,通常的办法是使用volatile修饰object字段。这种方法避免了重排序,保证了内存可见性,摒弃比使用同步块导致的性能损失更小。但是,假如使用场景对object的内存可见性并不敏感的话(不要求一个线程写入了object,object的新值立即对下一个读取的线程可见),在Intel 64/IA-32环境下,有更好的解决方案。

根据上一章的内容,我们知道Intel 64/IA-32下写操作之间不会发生重排序,即在处理器中,构建SomeThing对象与赋值到object这两个操作之间的顺序性是可以保证的。这样看起来,仅仅使用volatile来避免重排序是多此一举的。但是,Java编译器却可能生成重排序后的指令。但令人高兴的是,Oracle的JDK中提供了Unsafe. putOrderedObject,Unsafe. putOrderedInt,Unsafe. putOrderedLong这三个方法,JDK会在执行这三个方法时插入StoreStore内存屏障,避免发生写操作重排序。而在Intel 64/IA-32架构下,StoreStore屏障并不需要,Java编译器会将StoreStore屏障去除。比起写入volatile变量之后执行StoreLoad屏障的巨大开销,采用这种方法除了避免重排序而带来的性能损失以外,不会带来其它的性能开销。
我们将做一个小实验来比较二者的性能差异。一种是使用volatile修饰object成员变量。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class Container {
public static class SomeThing {
private int status;

public SomeThing() {
status = 1;
}

public int getStatus() {
return status;
}
}

private volatile SomeThing object;

public void create() {
object = new SomeThing();
}

public SomeThing get() {
while (object == null) {
Thread.yield(); //不加这句话可能会在此出现无限循环
}
return object;
}
}

一种是利用Unsafe. putOrderedObject在避免在适当的位置发生重排序。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
public class Container {
public static class SomeThing {
private int status;

public SomeThing() {
status = 1;
}

public int getStatus() {
return status;
}
}

private SomeThing object;

private Object value;
private static final Unsafe unsafe = getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset(Container.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}

public void create() {
SomeThing temp = new SomeThing();
unsafe.putOrderedObject(this, valueOffset, null); //将value赋null值只是一项无用操作,实际利用的是这条语句的内存屏障
object = temp;
}

public SomeThing get() {
while (object == null) {
Thread.yield();
}
return object;
}


public static Unsafe getUnsafe() {
try {
Field f = Unsafe.class.getDeclaredField("theUnsafe");
f.setAccessible(true);
return (Unsafe)f.get(null);
} catch (Exception e) {
}
return null;
}
}

由于直接调用Unsafe.getUnsafe()需要配置JRE获取较高权限,我们利用反射获取Unsafe中的theUnsafe来取得Unsafe的可用实例。
unsafe.putOrderedObject(this, valueOffset, null)
这句仅仅是为了借用这句话功能的防止写重排序,除此之外无其它作用。

利用下面的代码分别测试两种方案的实际运行时间。在运行时开启-server和 -XX:CompileThreshold=1以模拟生产环境下长时间运行后的JIT优化效果。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
public static void main(String[] args) throws InterruptedException {
final int THREADS_COUNT = 20;
final int LOOP_COUNT = 100000;

long sum = 0;
long min = Integer.MAX_VALUE;
long max = 0;
for(int n = 0;n <= 100;n++) {
final Container basket = new Container();
List<Thread> putThreads = new ArrayList<Thread>();
List<Thread> takeThreads = new ArrayList<Thread>();
for (int i = 0; i < THREADS_COUNT; i++) {
putThreads.add(new Thread() {
@Override
public void run() {
for (int j = 0; j < LOOP_COUNT; j++) {
basket.create();
}
}
});
takeThreads.add(new Thread() {
@Override
public void run() {
for (int j = 0; j < LOOP_COUNT; j++) {
basket.get().getStatus();
}
}
});
}
long start = System.nanoTime();
for (int i = 0; i < THREADS_COUNT; i++) {
takeThreads.get(i).start();
putThreads.get(i).start();
}
for (int i = 0; i < THREADS_COUNT; i++) {
takeThreads.get(i).join();
putThreads.get(i).join();
}
long end = System.nanoTime();
long period = end - start;
if(n == 0) {
continue; //由于JIT的编译,第一次执行需要更多时间,将此时间不计入统计
}
sum += (period);
System.out.println(period);
if(period < min) {
min = period;
}
if(period > max) {
max = period;
}
}
System.out.println("Average : " + sum / 100);
System.out.println("Max : " + max);
System.out.println("Min : " + min);
}

在笔者的计算机上运行测试,采用volatile方案的运行结果如下
Average : 62535770
Max : 82515000
Min : 45161000

采用unsafe.putOrderedObject方案的运行结果如下
Average : 50746230
Max : 68999000
Min : 38038000

从结果看出,unsafe.putOrderedObject方案比volatile方案平均耗时减少18.9%,最大耗时减少16.4%,最小耗时减少15.8%.另外,即使在其它会发生写写重排序的处理器中,由于StoreStore屏障的性能损耗小于StoreLoad屏障,采用这一方法也是一种可行的方案。但值得再次注意的是,这一方案不是对volatile语义的等价替换,而是在特定场景下做的特殊优化,它仅避免了写写重排序,但不保证内存可见性。

 

附1 复现重排序现象实验代码**

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
public class Test {
private static int x = 0, y = 0;
private static int a = 0, b =0;

public static void main(String[] args) throws InterruptedException {
int i = 0;
for(;;) {
i++;
x = 0; y = 0;
a = 0; b = 0;
Thread one = new Thread(new Runnable() {
public void run() {
//由于线程one先启动,下面这句话让它等一等线程two. 读着可根据自己电脑的实际性能适当调整等待时间.
shortWait(100000);
a = 1;
x = b;
}
});

Thread other = new Thread(new Runnable() {
public void run() {
b = 1;
y = a;
}
});
one.start();other.start();
one.join();other.join();
String result = "第" + i + "次 (" + x + "," + y + ")";
if(x == 0 && y == 0) {
System.err.println(result);
break;
} else {
System.out.println(result);
}
}
}


public static void shortWait(long interval){
long start = System.nanoTime();
long end;
do{
end = System.nanoTime();
}while(start + interval >= end);
}
}

简述Java中满足线程安全的数据结构

所谓 线程安全 就是:一段操纵共享数据的代码能够保证在同一时间内被多个线程执行而仍然保持其正确性的,就被称为是线程安全的。

阅读全文 »

简述

一个目标:容器操作;两地三中心;四层服务发现;五种Pod共享资源;六个CNI常用插件;七层负载均衡;八种隔离维度;九个网络模型原则;十类IP地址;百级产品线;千级物理机;万级容器;亿级日服务人次。

一个目标:容器操作

Kubernetes(k8s)是自动化容器操作的开源平台。这些容器操作包括:部署,调度和节点集群间扩展。
具体功能:

  • 自动化容器部署和复制。
  • 实时弹性收缩容器规模。
  • 容器编排成组,并提供容器间的负载均衡。
  • 调度:容器在哪个机器上运行。
    组成:
  • kubectl:客户端命令行工具,作为整个系统的操作入口。
  • kube-apiserver:以REST API服务形式提供接口,作为整个系统的控制入口。
  • kube-controller-manager:执行整个系统的后台任务,包括节点状态状况、Pod个数、Pods和Service的关联等。
  • kube-scheduler:负责节点资源管理,接收来自kube-apiserver创建Pods任务,并分配到某个节点。
  • etcd:负责节点间的服务发现和配置共享。
  • kube-proxy:运行在每个计算节点上,负责Pod网络代理。定时从etcd获取到service信息来做相应的策略。
  • kubelet:运行在每个计算节点上,作为agent,接收分配该节点的Pods任务及管理容器,周期性获取容器状态,反馈给kube-apiserver。
  • DNS:一个可选的DNS服务,用于为每个Service对象创建DNS记录,这样所有的Pod就可以通过DNS访问服务了。
    下面是K8s的架构拓扑图:

两地三中心

两地三中心包括本地生产中心、本地灾备中心、异地灾备中心。

两地三中心要解决的一个重要问题就是数据一致性问题。k8s使用etcd组件作为一个高可用、强一致性的服务发现存储仓库。用于配置共享和服务发现。

它作为一个受到Zookeeper和doozer启发而催生的项目。除了拥有他们的所有功能之外,还拥有以下4个特点:

  • 简单:基于http+json的api让你用curl命令就可以轻松使用。
  • 安全:可选SSL客户认证机制。
  • 快速:每个实例每秒支持一千次写操作。
  • 可信:使用Raft算法充分实现了分布式。

四层服务发现

先一张图解释一下网络七层协议:

k8s提供了两种方式进行服务发现:

  1. 环境变量:当创建一个Pod的时候,kubelet会在该Pod中注入集群内所有Service的相关环境变量。需要注意的是,要想一个Pod中注入某个Service的环境变量,则必须Service要先比该Pod创建。这一点,几乎使得这种方式进行服务发现不可用。
    比如,一个ServiceName为redis-master的Service,对应的ClusterIP:Port为10.0.0.11:6379,则对应的环境变量为:
  2. DNS:可以通过cluster add-on的方式轻松的创建KubeDNS来对集群内的Service进行服务发现。

以上两种方式,一个是基于tcp,众所周知,DNS是基于UDP的,它们都是建立在四层协议之上。

五种Pod共享资源

Pod是K8s最基本的操作单元,包含一个或多个紧密相关的容器,一个Pod可以被一个容器化的环境看作应用层的“逻辑宿主机”;一个Pod中的多个容器应用通常是紧密耦合的,Pod在Node上被创建、启动或者销毁;每个Pod里运行着一个特殊的被称之为Volume挂载卷,因此他们之间通信和数据交换更为高效,在设计时我们可以充分利用这一特性将一组密切相关的服务进程放入同一个Pod中。
同一个Pod里的容器之间仅需通过localhost就能互相通信。一个Pod中的应用容器共享五种资源:

  • PID命名空间:Pod中的不同应用程序可以看到其他应用程序的进程ID。
  • 网络命名空间:Pod中的多个容器能够访问同一个IP和端口范围。
  • IPC命名空间:Pod中的多个容器能够使用SystemV IPC或POSIX消息队列进行通信。
  • UTS命名空间:Pod中的多个容器共享一个主机名。
  • Volumes(共享存储卷):Pod中的各个容器可以访问在Pod级别定义的Volumes。
    Pod的生命周期通过Replication Controller来管理;通过模板进行定义,然后分配到一个Node上运行,在Pod所包含容器运行结束后,Pod结束。
    Kubernetes为Pod设计了一套独特的网络配置,包括:为每个Pod分配一个IP地址,使用Pod名作为荣期间通信的主机名等。

六个CNI常用插件

CNI(Container Network Interface)容器网络接口,是Linux容器网络配置的一组标准和库,用户需要根据这些标准和库来开发自己的容器网络插件。CNI只专注解决容器网络连接和容器销毁时的资源释放,提供一套框架,所以CNI可以支持大量不同的网络模式,并且容易实现。
下面用一张图表示六个CNI常用插件:

七层负载均衡

提负载均衡就不得不先提服务器之间的通信。
IDC(Internet Data Center),也可称 数据中心、机房,用来放置服务器。IDC网络是服务器间通信的桥梁。

上图里画了很多网络设备,它们都是干啥用的呢?
路由器、交换机、MGW/NAT都是网络设备,按照性能、内外网划分不同的角色。

  • 内网接入交换机:也称为TOR(top of rack),是服务器接入网络的设备。每台内网接入交换机下联40-48台服务器,使用一个掩码为/24的网段作为服务器内网网段。
  • 内网核心交换机:负责IDC内各内网接入交换机的流量转发及跨IDC流量转发。
  • MGW/NAT:MGW即LVS用来做负载均衡,NAT用于内网设备访问外网时做地址转换。
  • 外网核心路由器:通过静态互联运营商或BGP互联美团统一外网平台。

先说说各层负载均衡:

  • 二层负载均衡:基于MAC地址的二层负载均衡。
  • 三层负载均衡:基于IP地址的负载均衡。
  • 四层负载均衡:基于IP+端口的负载均衡。
  • 七层负载均衡:基于URL等应用层信息的负载均衡。
    这里用一张图来说说四层和七层负载均衡的区别: 上面四层服务发现讲的主要是k8s原生的kube-proxy方式。K8s关于服务的暴露主要是通过NodePort方式,通过绑定minion主机的某个端口,然后进行pod的请求转发和负载均衡,但这种方式有下面的缺陷: Service可能有很多个,如果每个都绑定一个node主机端口的话,主机需要开放外围的端口进行服务调用,管理混乱。 无法应用很多公司要求的防火墙规则。

理想的方式是通过一个外部的负载均衡器,绑定固定的端口,比如80,然后根据域名或者服务名向后面的Service ip转发,Nginx很好的解决了这个需求,但问题是如果有的心得服务加入,如何去修改Nginx的配置,并且加载这些配置?Kubernetes给出的方案就是Ingress。这是一个基于7层的方案。

八种隔离维度

K8s集群调度这边需要对上面从上到下从粗粒度到细粒度的隔离做相应的调度策略。

九个网络模型原则

K8s网络模型要符合4个基础原则,3个网络要求原则,1个架构原则,1个IP原则。
每个Pod都拥有一个独立的IP地址,而且假定所有Pod都在一个可以直接连通的、扁平的网络空间中,不管是否运行在同一Node上都可以通过Pod的IP来访问。

K8s中的Pod的IP是最小粒度IP。同一个Pod内所有的容器共享一个网络堆栈,该模型称为IP-per-Pod模型。
Pod由docker0实际分配的IP,Pod内部看到的IP地址和端口与外部保持一致。同一个Pod内的不同容器共享网络,可以通过localhost来访问对方的端口,类似同一个VM内不同的进程。
IP-per-Pod模型从端口分配、域名解析、服务发现、负载均衡、应用配置等角度看,Pod可以看做是一台独立的VM或物理机。
所有容器都可以不用NAT的方式同别的容器通信。
所有节点都可以在不同NAT方式下同所有容器心痛,反之亦然。
容器的地址和别人看到的地址是同一个地址。
要符合下面的架构:

由上图架构引申出来IP概念从集群外部到集群内部

十类IP地址
大家都知道IP地址分为ABCDE类,另外还有5类特殊用途的IP。

  1. A类
    0.0.0-1226.255.255.255,默认子网掩码/8,即255.0.0.0
    1. B类
    2. 0.0.0-191.255.255.255,默认子网掩码/16,即255.255.0.0
    3. C类
    4. 0.0.0-223.255.255.255,默认子网掩码/24,即255.255.255.0
    5. D类
    6. 0.0.0-239.255.255.255,一般用于组播
    7. E类
    8. 0.0.0-255.255.255.255(其中255.255.255.255为全网广播地址),E类地址一般用于研究用途
  2. 0.0.0.0
    严格来说,0.0.0.0已经不是一个真正意义上的IP地址了。它表示的是这样一个集合:所有不清楚的主机和目的网络。这里的不清楚是指在本机的路由表里没有特定条目指明如何到达。作为缺省路由。
    7.127.0.0.1
    本机地址
  3. 224.0.0.1
    组播地址。如果你的主机开启了IRDP(internet路由发现,使用组播功能),那么你的主机路由表中应该有这样一条路由。
  4. 169.254.x.x
    使用了DHCP功能自动获取了IP的主机,DHCP服务器发生故障,或响应时间太长而超出了一个系统规定的时间,系统会为你分配这样一个IP,代表网络不能正常运行。
  5. 10.xxx、172.16.x.x~172.31.x.x、192.168.x.x
    私有地址,大量用于企业内部。保留这样的地址是为了避免亦或是哪个接入公网时引起地址混乱。

版本 名称 发行日期
JDK 1.0 Oak(橡树) 1996-01-23
JDK 1.1 1997-02-19
JDK 1.1.4 Sparkler(宝石) 1997-09-12
JDK 1.1.5 Pumpkin(南瓜) 1997-12-13
JDK 1.1.6 Abigail(阿比盖尔–女子名) 1998-04-24
JDK 1.1.7 Brutus(布鲁图–古罗马政治家和将军) 1998-09-28
JDK 1.1.8 Chelsea(切尔西–城市名) 1999-04-08
J2SE 1.2 Playground(运动场) 1998-12-04
J2SE 1.2.1 none(无) 1999-03-30
J2SE 1.2.2 Cricket(蟋蟀) 1999-07-08
J2SE 1.3 Kestrel(美洲红隼) 2000-05-08
J2SE 1.3.1 Ladybird(瓢虫) 2001-05-17
J2SE 1.4.0 Merlin(灰背隼) 2002-02-13
J2SE 1.4.1 grasshopper(蚱蜢) 2002-09-16
J2SE 1.4.2 Mantis(螳螂) 2003-06-26
Java SE 5.0 (1.5.0) Tiger(老虎) 2004-09-30
Java SE 6.0 (1.6.0) Mustang(野马) 2006-04
Java SE 7.0 (1.7.0) Dolphin(海豚) 2011-07-28
Java SE 8.0 (1.8.0) Spider(蜘蛛) 2014-03-18
Java SE 9.0 2017-09-21
Java SE 10.0 2018-03-21
Java SE 11.0 2018-09-25
Java SE 12.0 2019-03-19
Java SE 13.0 2019-09-08
Java SE 14.0 2020-03-17

从这个表中我们可以看出一个非常有意思的现象,就是JDK的每一个版本号都使用一个开发代号表示(就是表中的中文名)。而且从JDK1.2.2 开始,主要版本(如1.3,1.4,5.0)都是以鸟类或哺乳动物来命名的. 而它们的bug修正版本(如1.2.2,1.3.1,1.4.2)都是以昆虫命名的。

时间-事件轴

1995年5月23日,Java语言诞生
1996年1月,第一个JDK-JDK1.0诞生
1996年4月,10个最主要的操作系统供应商申明将在其产品中嵌入JAVA技术
1996年9月,约8.3万个网页应用了JAVA技术来制作
1997年2月18日,JDK1.1发布
1997年4月2日,JavaOne会议召开,参与者逾一万人,创当时全球同类会议规模之纪录
1997年9月,JavaDeveloperConnection社区成员超过十万
1998年2月,JDK1.1被下载超过2,000,000次
1998年12月8日,JAVA2企业平台J2EE发布
1999年6月,SUN公司发布Java的三个版本:标准版、企业版和微型版(J2SE、J2EE、J2ME)
2000年5月8日,JDK1.3发布
2000年5月29日,JDK1.4发布
2001年6月5日,NOKIA宣布,到2003年将出售1亿部支持Java的手机
2001年9月24日,J2EE1.3发布
2002年2月13日,J2SE1.4发布,自此Java的计算能力有了大幅提升。
2004年9月30日18:00PM,J2SE1.5发布,是Java语言的发展史上的又一里程碑事件。为了表示这个版本的重要性,J2SE1.5更名为J2SE5.0
2005年6月,JavaOne大会召开,SUN公司公开Java SE 6。此时,Java的各种版本已经更名以取消其中的数字“2”:J2EE更名为Java EE, J2SE更名为Java SE,J2ME更名为Java ME。
2006年11月13日,SUN公司宣布Java全线采纳GNU General Public License Version 2,从而公开了Java的源代码。

Java面试总结汇总,整理了包括Java基础知识,集合容器,并发编程,JVM,常用开源框架Spring,MyBatis,数据库,中间件等,包含了作为一个Java工程师在面试中需要用到或者可能用到的绝大部分知识。

序号 内容 链接地址
1 Java基础知识面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104390612
2 Java集合容器面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104588551
3 Java异常面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104390689
4 并发编程面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104863992
5 JVM面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104390752
6 Spring面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104397516
7 Spring MVC面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104397427
8 Spring Boot面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104397299
9 Spring Cloud面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104397367
10 MyBatis面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/101292950
11 Redis面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/103522351
12 MySQL数据库面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104778621
13 消息中间件MQ与RabbitMQ面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104588612
14 Dubbo面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104390006
15 Linux面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104588679
16 Tomcat面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104397665
17 ZooKeeper面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104397719
18 Netty面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/104391081
19 架构设计&分布式&数据结构与算法面试题(2020最新版) https://thinkwon.blog.csdn.net/article/details/105870730

数据库基础知识

为什么要使用数据库

数据保存在内存

优点: 存取速度快

缺点: 数据不能永久保存

数据保存在文件

优点: 数据永久保存

缺点:1)速度比内存操作慢,频繁的IO操作。 2)查询数据不方便

数据保存在数据库

1)数据永久保存

2)使用SQL语句,查询方便效率高。

3)管理数据方便

什么是SQL?

结构化查询语言(Structured Query Language)简称SQL,是一种数据库查询语言。

作用:用于存取数据、查询、更新和管理关系数据库系统。

什么是MySQL?

MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品。MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RDBMS (Relational Database Management System,关系数据库管理系统) 应用软件之一。在Java企业级开发中非常常用,因为 MySQL 是开源免费的,并且方便扩展。

数据库三大范式是什么

第一范式:每个列都不可以再拆分。

第二范式:在第一范式的基础上,非主键列完全依赖于主键,而不能是依赖于主键的一部分。

第三范式:在第二范式的基础上,非主键列只依赖于主键,不依赖于其他非主键。

在设计数据库结构的时候,要尽量遵守三范式,如果不遵守,必须有足够的理由。比如性能。事实上我们经常会为了性能而妥协数据库的设计。

mysql有关权限的表都有哪几个

MySQL服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。下面分别介绍一下这些表的结构和内容:

  • user权限表:记录允许连接到服务器的用户帐号信息,里面的权限是全局级的。
  • db权限表:记录各个帐号在各个数据库上的操作权限。
  • table_priv权限表:记录数据表级的操作权限。
  • columns_priv权限表:记录数据列级的操作权限。
  • host权限表:配合db权限表对给定主机上数据库级操作权限作更细致的控制。这个权限表不受GRANT和REVOKE语句的影响。

MySQL的binlog有有几种录入格式?分别有什么区别?

有三种格式,statement,row和mixed。

  • statement模式下,每一条会修改数据的sql都会记录在binlog中。不需要记录每一行的变化,减少了binlog日志量,节约了IO,提高性能。由于sql的执行是有上下文的,因此在保存的时候需要保存相关的信息,同时还有一些使用了函数之类的语句无法被记录复制。
  • row级别下,不记录sql语句上下文相关信息,仅保存哪条记录被修改。记录单元为每一行的改动,基本是可以全部记下来但是由于很多操作,会导致大量行的改动(比如alter table),因此这种模式的文件保存的信息太多,日志量太大。
  • mixed,一种折中的方案,普通操作使用statement记录,当无法使用statement的时候使用row。

此外,新版的MySQL中对row级别也做了一些优化,当表结构发生变化的时候,会记录语句而不是逐行记录。

数据类型

mysql有哪些数据类型

分类 类型名称 说明
整数类型 tinyInt 很小的整数(8位二进制)
smallint 小的整数(16位二进制)
mediumint 中等大小的整数(24位二进制)
int(integer) 普通大小的整数(32位二进制)
小数类型 float 单精度浮点数
double 双精度浮点数
decimal(m,d) 压缩严格的定点数
日期类型 year YYYY 1901~2155
time HH:MM:SS -838:59:59~838:59:59
date YYYY-MM-DD 1000-01-01~9999-12-3
datetime YYYY-MM-DD HH:MM:SS 1000-01-01 00:00:00~ 9999-12-31 23:59:59
timestamp YYYY-MM-DD HH:MM:SS 19700101 00:00:01 UTC~2038-01-19 03:14:07UTC
文本、二进制类型 CHAR(M) M为0~255之间的整数
VARCHAR(M) M为0~65535之间的整数
TINYBLOB 允许长度0~255字节
BLOB 允许长度0~65535字节
MEDIUMBLOB 允许长度0~167772150字节
LONGBLOB 允许长度0~4294967295字节
TINYTEXT 允许长度0~255字节
TEXT 允许长度0~65535字节
MEDIUMTEXT 允许长度0~167772150字节
LONGTEXT 允许长度0~4294967295字节
VARBINARY(M) 允许长度0~M个字节的变长字节字符串
BINARY(M) 允许长度0~M个字节的定长字节字符串
  • 1、整数类型,包括TINYINT、SMALLINT、MEDIUMINT、INT、BIGINT,分别表示1字节、2字节、3字节、4字节、8字节整数。任何整数类型都可以加上UNSIGNED属性,表示数据是无符号的,即非负整数。
    长度:整数类型可以被指定长度,例如:INT(11)表示长度为11的INT类型。长度在大多数场景是没有意义的,它不会限制值的合法范围,只会影响显示字符的个数,而且需要和UNSIGNED ZEROFILL属性配合使用才有意义。
    例子,假定类型设定为INT(5),属性为UNSIGNED ZEROFILL,如果用户插入的数据为12的话,那么数据库实际存储数据为00012。

  • 2、实数类型,包括FLOAT、DOUBLE、DECIMAL。
    DECIMAL可以用于存储比BIGINT还大的整型,能存储精确的小数。
    而FLOAT和DOUBLE是有取值范围的,并支持使用标准的浮点进行近似计算。
    计算时FLOAT和DOUBLE相比DECIMAL效率更高一些,DECIMAL你可以理解成是用字符串进行处理。

  • 3、字符串类型,包括VARCHAR、CHAR、TEXT、BLOB
    VARCHAR用于存储可变长字符串,它比定长类型更节省空间。
    VARCHAR使用额外1或2个字节存储字符串长度。列长度小于255字节时,使用1字节表示,否则使用2字节表示。
    VARCHAR存储的内容超出设置的长度时,内容会被截断。
    CHAR是定长的,根据定义的字符串长度分配足够的空间。
    CHAR会根据需要使用空格进行填充方便比较。
    CHAR适合存储很短的字符串,或者所有值都接近同一个长度。
    CHAR存储的内容超出设置的长度时,内容同样会被截断。

使用策略:
对于经常变更的数据来说,CHAR比VARCHAR更好,因为CHAR不容易产生碎片。
对于非常短的列,CHAR比VARCHAR在存储空间上更有效率。
使用时要注意只分配需要的空间,更长的列排序时会消耗更多内存。
尽量避免使用TEXT/BLOB类型,查询时会使用临时表,导致严重的性能开销。

  • 4、枚举类型(ENUM),把不重复的数据存储为一个预定义的集合。
    有时可以使用ENUM代替常用的字符串类型。
    ENUM存储非常紧凑,会把列表值压缩到一个或两个字节。
    ENUM在内部存储时,其实存的是整数。
    尽量避免使用数字作为ENUM枚举的常量,因为容易混乱。
    排序是按照内部存储的整数

  • 5、日期和时间类型,尽量使用timestamp,空间效率高于datetime,
    用整数保存时间戳通常不方便处理。
    如果需要存储微妙,可以使用bigint存储。
    看到这里,这道真题是不是就比较容易回答了。

引擎

MySQL存储引擎MyISAM与InnoDB区别

存储引擎Storage engine:MySQL中的数据、索引以及其他对象是如何存储的,是一套文件系统的实现。

常用的存储引擎有以下:

  • Innodb引擎:Innodb引擎提供了对数据库ACID事务的支持。并且还提供了行级锁和外键的约束。它的设计的目标就是处理大数据容量的数据库系统。
  • MyIASM引擎(原本Mysql的默认引擎):不提供事务的支持,也不支持行级锁和外键。
  • MEMORY引擎:所有的数据都在内存中,数据的处理速度快,但是安全性不高。

MyISAM与InnoDB区别

MyISAM Innodb
存储结构 每张表被存放在三个文件:frm-表格定义、MYD(MYData)-数据文件、MYI(MYIndex)-索引文件 所有的表都保存在同一个数据文件中(也可能是多个文件,或者是独立的表空间文件),InnoDB表的大小只受限于操作系统文件的大小,一般为2GB
存储空间 MyISAM可被压缩,存储空间较小 InnoDB的表需要更多的内存和存储,它会在主内存中建立其专用的缓冲池用于高速缓冲数据和索引
可移植性、备份及恢复 由于MyISAM的数据是以文件的形式存储,所以在跨平台的数据转移中会很方便。在备份和恢复时可单独针对某个表进行操作 免费的方案可以是拷贝数据文件、备份 binlog,或者用 mysqldump,在数据量达到几十G的时候就相对痛苦了
文件格式 数据和索引是分别存储的,数据.MYD,索引.MYI 数据和索引是集中存储的,.ibd
记录存储顺序 按记录插入顺序保存 按主键大小有序插入
外键 不支持 支持
事务 不支持 支持
锁支持(锁是避免资源争用的一个机制,MySQL锁对用户几乎是透明的) 表级锁定 行级锁定、表级锁定,锁定力度小并发能力高
SELECT MyISAM更优
INSERT、UPDATE、DELETE InnoDB更优
select count(*) myisam更快,因为myisam内部维护了一个计数器,可以直接调取。
索引的实现方式 B+树索引,myisam 是堆表 B+树索引,Innodb 是索引组织表
哈希索引 不支持 支持
全文索引 支持 不支持

MyISAM索引与InnoDB索引的区别?

  • InnoDB索引是聚簇索引,MyISAM索引是非聚簇索引。
  • InnoDB的主键索引的叶子节点存储着行数据,因此主键索引非常高效。
  • MyISAM索引的叶子节点存储的是行数据地址,需要再寻址一次才能得到数据。
  • InnoDB非主键索引的叶子节点存储的是主键和其他带索引的列数据,因此查询时做到覆盖索引会非常高效。

聚簇索引和非聚簇索引的区别?

  • 聚簇索引的叶子节点就是数据节点,
  • 而非聚簇索引的叶子节点仍然是索引节点,只不过有指向对应数据块的指针。

InnoDB引擎的4大特性

  • 插入缓冲(insert buffer)
  • 二次写(double write)
  • 自适应哈希索引(ahi)
  • 预读(read ahead)

存储引擎选择

如果没有特别的需求,使用默认的Innodb即可。

MyISAM:以读写插入为主的应用程序,比如博客系统、新闻门户网站。

Innodb:更新(删除)操作频率也高,或者要保证数据的完整性;并发量高,支持事务和外键。比如OA自动化办公系统。

索引

什么是索引?

索引是一种特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针。

索引是一种数据结构。数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B树及其变种B+树。

更通俗的说,索引就相当于目录。为了方便查找书中的内容,通过对内容建立索引形成目录。索引是一个文件,它是要占据物理空间的。

索引有哪些优缺点?

索引的优点

  • 可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
  • 通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

索引的缺点

  • 时间方面:创建索引和维护索引要耗费时间,具体地,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,会降低增/改/删的执行效率;
  • 空间方面:索引需要占物理空间。

索引使用场景(重点)

  • where
img

上图中,根据id查询记录,因为id字段仅建立了主键索引,因此此SQL执行可选的索引只有主键索引,如果有多个,最终会选一个较优的作为检索的依据。

1
2
3
4
-- 增加一个没有建立索引的字段
alter table innodb1 add sex char(1);
-- 按sex检索时可选的索引为null
EXPLAIN SELECT * from innodb1 where sex='男';
img

可以尝试在一个字段未建立索引时,根据该字段查询的效率,然后对该字段建立索引(alter table 表名 add index(字段名)),同样的SQL执行的效率,你会发现查询效率会有明显的提升(数据量越大越明显)。

  • order by

当我们使用order by将查询结果按照某个字段排序时,如果该字段没有建立索引,那么执行计划会将查询出的所有数据使用外部排序(将数据从硬盘分批读取到内存使用内部排序,最后合并排序结果),这个操作是很影响性能的,因为需要将查询涉及到的所有数据从磁盘中读到内存(如果单条数据过大或者数据量过多都会降低效率),更无论读到内存之后的排序了。

但是如果我们对该字段建立索引alter table 表名 add index(字段名),那么由于索引本身是有序的,因此直接按照索引的顺序和映射关系逐条取出数据即可。而且如果分页的,那么只用取出索引表某个范围内的索引对应的数据,而不用像上述那取出所有数据进行排序再返回某个范围内的数据。(从磁盘取数据是最影响性能的)

  • join
    join语句匹配关系(on)涉及的字段建立索引能够提高效率

  • 索引覆盖
    如果要查询的字段都建立过索引,那么引擎会直接在索引表中查询而不会访问原始数据(否则只要有一个字段没有建立索引就会做全表扫描),这叫索引覆盖。因此我们需要尽可能的在select只写必要的查询字段,以增加索引覆盖的几率。

这里值得注意的是不要想着为每个字段建立索引,因为优先使用索引的优势就在于其体积小。

索引有哪几种类型?

  • 主键索引: 数据列不允许重复,不允许为NULL,一个表只能有一个主键。

  • 唯一索引: 数据列不允许重复,允许为NULL值,一个表允许多个列创建唯一索引。

可以通过 ALTER TABLE table_name ADD UNIQUE (column); 创建唯一索引

可以通过 ALTER TABLE table_name ADD UNIQUE (column1,column2); 创建唯一组合索引

可以通过 ALTER TABLE table_name ADD UNIQUE (column1,column2); 创建唯一组合索引

  • 普通索引: 基本的索引类型,没有唯一性的限制,允许为NULL值。

可以通过ALTER TABLE table_name ADD INDEX index_name (column);创建普通索引

可以通过ALTER TABLE table_name ADD INDEX index_name(column1, column2, column3);创建组合索引

可以通过ALTER TABLE table_name ADD INDEX index_name(column1, column2, column3);创建组合索引

全文索引: 是目前搜索引擎使用的一种关键技术。

  • 可以通过ALTER TABLE table_name ADD FULLTEXT (column);创建全文索引

索引的数据结构(b树,hash)

索引的数据结构和具体存储引擎的实现有关,在MySQL中使用较多的索引有Hash索引B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。

1)B树索引

mysql通过存储引擎取数据,基本上90%的人用的就是InnoDB了,按照实现方式分,InnoDB的索引类型目前只有两种:BTREE(B树)索引和HASH索引。B树索引是Mysql数据库中使用最频繁的索引类型,基本所有存储引擎都支持BTree索引。通常我们说的索引不出意外指的就是(B树)索引(实际是用B+树实现的,因为在查看表索引时,mysql一律打印BTREE,所以简称为B树索引)

img

查询方式:

主键索引区:PI(关联保存的时数据的地址)按主键查询,

普通索引区:si(关联的id的地址,然后再到达上面的地址)。所以按主键查询,速度最快

B+tree性质:

1.)n棵子tree的节点包含n个关键字,不用来保存数据而是保存数据的索引。

2.)所有的叶子结点中包含了全部关键字的信息,及指向含这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。

3.)所有的非终端结点可以看成是索引部分,结点中仅含其子树中的最大(或最小)关键字。

4.)B+ 树中,数据对象的插入和删除仅在叶节点上进行。

5.)B+树有2个头指针,一个是树的根节点,一个是最小关键码的叶节点。

2)哈希索引

简要说下,类似于数据结构中简单实现的HASH表(散列表)一样,当我们在mysql中用哈希索引时,主要就是通过Hash算法(常见的Hash算法有直接定址法、平方取中法、折叠法、除数取余法、随机数法),将数据库字段数据转换成定长的Hash值,与这条数据的行指针一并存入Hash表的对应位置;如果发生Hash碰撞(两个不同关键字的Hash值相同),则在对应Hash键下以链表形式存储。当然这只是简略模拟图。

img

索引的基本原理

索引用来快速地寻找那些具有特定值的记录。如果没有索引,一般来说执行查询时遍历整张表。

索引的原理很简单,就是把无序的数据变成有序的查询

把创建了索引的列的内容进行排序

对排序结果生成倒排表

在倒排表内容上拼上数据地址链

在查询的时候,先拿到倒排表内容,再取出数据地址链,从而拿到具体数据

对排序结果生成倒排表

在查询的时候,先拿到倒排表内容,再取出数据地址链,从而拿到具体数据

索引算法有哪些?

索引算法有 BTree算法和Hash算法

BTree算法

BTree是最常用的mysql数据库索引算法,也是mysql默认的算法。因为它不仅可以被用在=,>,>=,<,<=和between这些比较操作符上,而且还可以用于like操作符,只要它的查询条件是一个不以通配符开头的常量, 例如:

1
2
3
4
-- 只要它的查询条件是一个不以通配符开头的常量
select * from user where name like 'jack%';
-- 如果一通配符开头,或者没有使用常量,则不会使用索引,例如:
select * from user where name like '%jack';

Hash算法

Hash Hash索引只能用于对等比较,例如=,<=>(相当于=)操作符。由于是一次定位数据,不像BTree索引需要从根节点到枝节点,最后才能访问到页节点这样多次IO访问,所以检索效率远高于BTree索引。

索引设计的原则?

  1. 适合索引的列是出现在where子句中的列,或者连接子句中指定的列
  2. 基数较小的类,索引效果较差,没有必要在此列建立索引
  3. 使用短索引,如果对长字符串列进行索引,应该指定一个前缀长度,这样能够节省大量索引空间
  4. 不要过度索引。索引需要额外的磁盘空间,并降低写操作的性能。在修改表内容的时候,索引会进行更新甚至重构,索引列越多,这个时间就会越长。所以只保持需要的索引有利于查询即可。

创建索引的原则(重中之重)

索引虽好,但也不是无限制的使用,最好符合一下几个原则

1) 最左前缀匹配原则,组合索引非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

2)较频繁作为查询条件的字段才去创建索引

3)更新频繁字段不适合创建索引

4)若是不能有效区分数据的列不适合做索引列(如性别,男女未知,最多也就三种,区分度实在太低)

5)尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。

6)定义有外键的数据列一定要建立索引。

7)对于那些查询中很少涉及的列,重复值比较多的列不要建立索引。

8)对于定义为text、image和bit的数据类型的列不要建立索引。

创建索引的三种方式,删除索引

第一种方式:在执行CREATE TABLE时创建索引

1
2
3
4
5
6
7
8
9
10
CREATE TABLE user_index2 (
id INT auto_increment PRIMARY KEY,
first_name VARCHAR (16),
last_name VARCHAR (16),
id_card VARCHAR (18),
information text,
KEY name (first_name, last_name),
FULLTEXT KEY (information),
UNIQUE KEY (id_card)
);

第二种方式:使用ALTER TABLE命令去增加索引

1
ALTER TABLE table_name ADD INDEX index_name (column_list);

ALTER TABLE用来创建普通索引、UNIQUE索引或PRIMARY KEY索引。

其中table_name是要增加索引的表名,column_list指出对哪些列进行索引,多列时各列之间用逗号分隔。

索引名index_name可自己命名,缺省时,MySQL将根据第一个索引列赋一个名称。另外,ALTER TABLE允许在单个语句中更改多个表,因此可以在同时创建多个索引。

第三种方式:使用CREATE INDEX命令创建

1
CREATE INDEX index_name ON table_name (column_list);

CREATE INDEX可对表增加普通索引或UNIQUE索引。(但是,不能创建PRIMARY KEY索引)

删除索引

根据索引名删除普通索引、唯一索引、全文索引:alter table 表名 drop KEY 索引名

1
2
3
alter table user_index drop KEY name;
alter table user_index drop KEY id_card;
alter table user_index drop KEY information;

删除主键索引:alter table 表名 drop primary key(因为主键只有一个)。这里值得注意的是,如果主键自增长,那么不能直接执行此操作(自增长依赖于主键索引):

img

需要取消自增长再行删除:

1
2
3
4
alter table user_index
-- 重新定义字段
MODIFY id int,
drop PRIMARY KEY

但通常不会删除主键,因为设计主键一定与业务逻辑无关。

创建索引时需要注意什么?

  • 非空字段:应该指定列为NOT NULL,除非你想存储NULL。在mysql中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。你应该用0、一个特殊的值或者一个空串代替空值;
  • 取值离散大的字段:(变量各个取值之间的差异程度)的列放到联合索引的前面,可以通过count()函数查看字段的差异值,返回值越大说明字段的唯一值越多字段的离散程度高;
  • 索引字段越小越好:数据库的数据存储以页为单位一页存储的数据越多一次IO操作获取的数据越大效率越高。

使用索引查询一定能提高查询的性能吗?为什么

通常,通过索引查询数据比全表扫描要快。但是我们也必须注意到它的代价。

  • 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时,索引本身也会被修改。 这意味着每条记录的INSERT,DELETE,UPDATE将为此多付出4,5 次的磁盘I/O。 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢。使用索引查询不一定能提高查询性能,索引范围查询(INDEX RANGE SCAN)适用于两种情况:
  • 基于一个范围的检索,一般查询返回结果集小于表中记录数的30%
  • 基于非唯一性索引的检索

百万级别或以上的数据如何删除

关于索引:由于索引需要额外的维护成本,因为索引文件是单独存在的文件,所以当我们对数据的增加,修改,删除,都会产生额外的对索引文件的操作,这些操作需要消耗额外的IO,会降低增/改/删的执行效率。所以,在我们删除数据库百万级别数据的时候,查询MySQL官方手册得知删除数据的速度和创建的索引数量是成正比的。

  1. 所以我们想要删除百万数据的时候可以先删除索引(此时大概耗时三分多钟)
  2. 然后删除其中无用数据(此过程需要不到两分钟)
  3. 删除完成后重新创建索引(此时数据较少了)创建索引也非常快,约十分钟左右。
  4. 与之前的直接删除绝对是要快速很多,更别说万一删除中断,一切删除会回滚。那更是坑了。

前缀索引

语法:index(field(10)),使用字段值的前10个字符建立索引,默认是使用字段的全部内容建立索引。

前提:前缀的标识度高。比如密码就适合建立前缀索引,因为密码几乎各不相同。

实操的难度:在于前缀截取的长度。

我们可以利用select count(*)/count(distinct left(password,prefixLen));,通过从调整prefixLen的值(从1自增)查看不同前缀长度的一个平均匹配度,接近1时就可以了(表示一个密码的前prefixLen个字符几乎能确定唯一一条记录)

什么是最左前缀原则?什么是最左匹配原则

  • 顾名思义,就是最左优先,在创建多列索引时,要根据业务需求,where子句中使用最频繁的一列放在最左边。
  • 最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
  • =和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式

B树和B+树的区别

在B树中,你可以将键和值存放在内部节点和叶子节点;但在B+树中,内部节点都是键,没有值,叶子节点同时存放键和值。

B+树的叶子节点有一条链相连,而B树的叶子节点各自独立。
img

B+树的叶子节点有一条链相连,而B树的叶子节点各自独立。

使用B树的好处

B树可以在内部节点同时存储键和值,因此,把频繁访问的数据放在靠近根节点的地方将会大大提高热点数据的查询效率。这种特性使得B树在特定数据重复多次查询的场景中更加高效。

使用B+树的好处

由于B+树的内部节点只存放键,不存放值,因此,一次读取,可以在内存页中获取更多的键,有利于更快地缩小查找范围。 B+树的叶节点由一条链相连,因此,当需要进行一次全数据遍历的时候,B+树只需要使用O(logN)时间找到最小的一个节点,然后通过链进行O(N)的顺序遍历即可。而B树则需要对树的每一层进行遍历,这会需要更多的内存置换次数,因此也就需要花费更多的时间

Hash索引和B+树所有有什么区别或者说优劣呢?

首先要知道Hash索引和B+树索引的底层实现原理:

hash索引底层就是hash表,进行查找时,调用一次hash函数就可以获取到相应的键值,之后进行回表查询获得实际数据。B+树底层实现是多路平衡查找树。对于每一次的查询都是从根节点出发,查找到叶子节点方可以获得所查键值,然后根据查询判断是否需要回表查询数据。

那么可以看出他们有以下的不同:

  • hash索引进行等值查询更快(一般情况下),但是却无法进行范围查询。

因为在hash索引中经过hash函数建立索引之后,索引的顺序与原顺序无法保持一致,不能支持范围查询。而B+树的的所有节点皆遵循(左节点小于父节点,右节点大于父节点,多叉树也类似),天然支持范围。

  • hash索引不支持使用索引进行排序,原理同上。
  • hash索引不支持模糊查询以及多列索引的最左前缀匹配。原理也是因为hash函数的不可预测。AAAA和AAAAB的索引没有相关性。
  • hash索引任何时候都避免不了回表查询数据,而B+树在符合某些条件(聚簇索引,覆盖索引等)的时候可以只通过索引完成查询。
  • hash索引虽然在等值查询上较快,但是不稳定。性能不可预测,当某个键值存在大量重复的时候,发生hash碰撞,此时效率可能极差。而B+树的查询效率比较稳定,对于所有的查询都是从根节点到叶子节点,且树的高度较低。

因此,在大多数情况下,直接选择B+树索引可以获得稳定且较好的查询速度。而不需要使用hash索引。

数据库为什么使用B+树而不是B树

  • B树只适合随机检索,而B+树同时支持随机检索和顺序检索;
  • B+树空间利用率更高,可减少I/O次数,磁盘读写代价更低。一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗。B+树的内部结点并没有指向关键字具体信息的指针,只是作为索引使用,其内部结点比B树小,盘块能容纳的结点中关键字数量更多,一次性读入内存中可以查找的关键字也就越多,相对的,IO读写次数也就降低了。而IO读写次数是影响索引检索效率的最大因素;
  • B+树的查询效率更加稳定。B树搜索有可能会在非叶子结点结束,越靠近根节点的记录查找时间越短,只要找到关键字即可确定记录的存在,其性能等价于在关键字全集内做一次二分查找。而在B+树中,顺序检索比较明显,随机检索时,任何关键字的查找都必须走一条从根节点到叶节点的路,所有关键字的查找路径长度相同,导致每一个关键字的查询效率相当。
  • B-树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。B+树的叶子节点使用指针顺序连接在一起,只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作。
  • 增删文件(节点)时,效率更高。因为B+树的叶子节点包含所有关键字,并以有序的链表结构存储,这样可很好提高增删效率。

B+树在满足聚簇索引和覆盖索引的时候不需要回表查询数据,

在B+树的索引中,叶子节点可能存储了当前的key值,也可能存储了当前的key值以及整行的数据,这就是聚簇索引和非聚簇索引。 在InnoDB中,只有主键索引是聚簇索引,如果没有主键,则挑选一个唯一键建立聚簇索引。如果没有唯一键,则隐式的生成一个键来建立聚簇索引。

当查询使用聚簇索引时,在对应的叶子节点,可以获取到整行数据,因此不用再次进行回表查询。

什么是聚簇索引?何时使用聚簇索引与非聚簇索引

  • 聚簇索引:将数据存储与索引放到了一块,找到索引也就找到了数据
  • 非聚簇索引:将数据存储于索引分开结构,索引结构的叶子节点指向了数据的对应行,myisam通过key_buffer把索引先缓存到内存中,当需要访问数据时(通过索引访问数据),在内存中直接搜索索引,然后通过索引找到磁盘相应数据,这也就是为什么索引不在key buffer命中时,速度慢的原因

澄清一个概念:innodb中,在聚簇索引之上创建的索引称之为辅助索引,辅助索引访问数据总是需要二次查找,非聚簇索引都是辅助索引,像复合索引、前缀索引、唯一索引,辅助索引叶子节点存储的不再是行的物理位置,而是主键值

何时使用聚簇索引与非聚簇索引

img

非聚簇索引一定会回表查询吗?

不一定,这涉及到查询语句所要求的字段是否全部命中了索引,如果全部命中了索引,那么就不必再进行回表查询。

举个简单的例子,假设我们在员工表的年龄上建立了索引,那么当进行select age from employee where age &lt; 20的查询时,在索引的叶子节点上,已经包含了age信息,不会再次进行回表查询。

联合索引是什么?为什么需要注意联合索引中的顺序?

MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。

具体原因为:

MySQL使用索引时需要索引有序,假设现在建立了”name,age,school”的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。

当进行查询时,此时索引仅仅按照name严格有序,因此必须首先使用name字段进行等值查询,之后对于匹配到的列而言,其按照age字段严格有序,此时可以使用age字段用做索引查找,以此类推。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。

事务

什么是数据库事务?

事务是一个不可分割的数据库操作序列,也是数据库并发控制的基本单位,其执行的结果必须使数据库从一种一致性状态变到另一种一致性状态。事务是逻辑上的一组操作,要么都执行,要么都不执行。

事务最经典也经常被拿出来说例子就是转账了。

假如小明要给小红转账1000元,这个转账会涉及到两个关键操作就是:将小明的余额减少1000元,将小红的余额增加1000元。万一在这两个操作之间突然出现错误比如银行系统崩溃,导致小明余额减少而小红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。

事物的四大特性(ACID)介绍一下?

关系性数据库需要遵循ACID规则,具体内容如下:

事务的特性
  1. 原子性: 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
  2. 一致性: 执行事务前后,数据保持一致,多个事务对同一个数据读取的结果是相同的;
  3. 隔离性: 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
  4. 持久性: 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。

什么是脏读?幻读?不可重复读?

  • 脏读(Drity Read):某个事务已更新一份数据,另一个事务在此时读取了同一份数据,由于某些原因,前一个RollBack了操作,则后一个事务所读取的数据就会是不正确的。
  • 不可重复读(Non-repeatable read):在一个事务的两次查询之中数据不一致,这可能是两次查询过程中间插入了一个事务更新的原有的数据。
  • 幻读(Phantom Read):在一个事务的两次查询中数据笔数不一致,例如有一个事务查询了几列(Row)数据,而另一个事务却在此时插入了新的几列数据,先前的事务在接下来的查询中,就会发现有几列数据是它先前所没有的。

什么是事务的隔离级别?MySQL的默认隔离级别是什么?

为了达到事务的四大特性,数据库定义了4种不同的事务隔离级别,由低到高依次为Read uncommitted、Read committed、Repeatable read、Serializable,这四个级别可以逐个解决脏读、不可重复读、幻读这几类问题。

隔离级别 脏读 不可重复读 幻影读
READ-UNCOMMITTED
READ-COMMITTED ×
REPEATABLE-READ × ×
SERIALIZABLE × × ×

SQL 标准定义了四个隔离级别:

  • READ-UNCOMMITTED(读取未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读
  • READ-COMMITTED(读取已提交): 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生
  • REPEATABLE-READ(可重复读): 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生
  • SERIALIZABLE(可串行化): 最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读

这里需要注意的是:Mysql 默认采用的 REPEATABLE_READ隔离级别 Oracle 默认采用的 READ_COMMITTED隔离级别

事务隔离机制的实现基于锁机制和并发调度。其中并发调度使用的是MVVC(多版本并发控制),通过保存修改的旧版本信息来支持并发一致性读和回滚等特性。

因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是READ-COMMITTED(读取提交内容):,但是你要知道的是InnoDB 存储引擎默认使用 REPEATABLE-READ(可重读)并不会有任何性能损失。

InnoDB 存储引擎在 分布式事务 的情况下一般会用到SERIALIZABLE(可串行化)隔离级别。

对MySQL的锁了解吗

当数据库有并发事务的时候,可能会产生数据的不一致,这时候需要一些机制来保证访问的次序,锁机制就是这样的一个机制。

就像酒店的房间,如果大家随意进出,就会出现多人抢夺同一个房间的情况,而在房间上装上锁,申请到钥匙的人才可以入住并且将房间锁起来,其他人只有等他使用完毕才可以再次使用。

隔离级别与锁的关系

在Read Uncommitted级别下,读取数据不需要加共享锁,这样就不会跟被修改的数据上的排他锁冲突

在Read Committed级别下,读操作需要加共享锁,但是在语句执行完以后释放共享锁;

在Repeatable Read级别下,读操作需要加共享锁,但是在事务提交之前并不释放共享锁,也就是必须等待事务执行完毕以后才释放共享锁。

SERIALIZABLE 是限制性最强的隔离级别,因为该级别锁定整个范围的键,并一直持有锁,直到事务完成。

按照锁的粒度分数据库锁有哪些?锁机制与InnoDB锁算法

在关系型数据库中,可以按照锁的粒度把数据库锁分为行级锁(INNODB引擎)、表级锁(MYISAM引擎)和页级锁(BDB引擎 )。

MyISAM和InnoDB存储引擎使用的锁:

  • MyISAM采用表级锁(table-level locking)。
  • InnoDB支持行级锁(row-level locking)和表级锁,默认为行级锁

行级锁,表级锁和页级锁对比

行级锁 行级锁是Mysql中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大。行级锁分为共享锁 和 排他锁。

特点:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。

表级锁 表级锁是MySQL中锁定粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分MySQL引擎支持。最常使用的MYISAM与INNODB都支持表级锁定。表级锁定分为表共享读锁(共享锁)与表独占写锁(排他锁)。

特点:开销小,加锁快;不会出现死锁;锁定粒度大,发出锁冲突的概率最高,并发度最低。

页级锁 页级锁是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。

特点:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般

从锁的类别上分MySQL都有哪些锁呢?像上面那样子进行锁定岂不是有点阻碍并发效率了

从锁的类别上来讲,有共享锁和排他锁。

共享锁: 又叫做读锁。 当用户要进行数据的读取时,对数据加上共享锁。共享锁可以同时加上多个。

排他锁: 又叫做写锁。 当用户要进行数据的写入时,对数据加上排他锁。排他锁只可以加一个,他和其他的排他锁,共享锁都相斥。

用上面的例子来说就是用户的行为有两种,一种是来看房,多个用户一起看房是可以接受的。 一种是真正的入住一晚,在这期间,无论是想入住的还是想看房的都不可以。

锁的粒度取决于具体的存储引擎,InnoDB实现了行级锁,页级锁,表级锁。

他们的加锁开销从大到小,并发能力也是从大到小。

MySQL中InnoDB引擎的行锁是怎么实现的?

答:InnoDB是基于索引来完成行锁

例: select * from tab_with_index where id = 1 for update;

for update 可以根据条件来完成行锁锁定,并且 id 是有索引键的列,如果 id 不是索引键那么InnoDB将完成表锁,并发将无从谈起

InnoDB存储引擎的锁的算法有三种

  • Record lock:单个行记录上的锁
  • Gap lock:间隙锁,锁定一个范围,不包括记录本身
  • Next-key lock:record+gap 锁定一个范围,包含记录本身

相关知识点:

  1. innodb对于行的查询使用next-key lock
  2. Next-locking keying为了解决Phantom Problem幻读问题
  3. 当查询的索引含有唯一属性时,将next-key lock降级为record key
  4. Gap锁设计的目的是为了阻止多个事务将记录插入到同一范围内,而这会导致幻读问题的产生
  5. 有两种方式显式关闭gap锁:(除了外键约束和唯一性检查外,其余情况仅使用record lock) A. 将事务隔离级别设置为RC B. 将参数innodb_locks_unsafe_for_binlog设置为1

什么是死锁?怎么解决?

死锁是指两个或多个事务在同一资源上相互占用,并请求锁定对方的资源,从而导致恶性循环的现象。

常见的解决死锁的方法

1、如果不同程序会并发存取多个表,尽量约定以相同的顺序访问表,可以大大降低死锁机会。

2、在同一个事务中,尽可能做到一次锁定所需要的所有资源,减少死锁产生概率;

3、对于非常容易产生死锁的业务部分,可以尝试使用升级锁定颗粒度,通过表级锁定来减少死锁产生的概率;

如果业务处理不好可以用分布式事务锁或者使用乐观锁

数据库的乐观锁和悲观锁是什么?怎么实现的?

数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性。乐观并发控制(乐观锁)和悲观并发控制(悲观锁)是并发控制主要采用的技术手段。

悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。在查询完数据的时候就把事务锁起来,直到提交事务。实现方式:使用数据库中的锁机制

乐观锁:假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。在修改数据的时候把事务锁起来,通过version的方式来进行锁定。实现方式:乐一般会使用版本号机制或CAS算法实现。

两种锁的使用场景

从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。

但如果是多写的情况,一般会经常产生冲突,这就会导致上层应用会不断的进行retry,这样反倒是降低了性能,所以一般多写的场景下用悲观锁就比较合适。

视图

为什么要使用视图?什么是视图?

为了提高复杂SQL语句的复用性和表操作的安全性,MySQL数据库管理系统提供了视图特性。所谓视图,本质上是一种虚拟表,在物理上是不存在的,其内容与真实的表相似,包含一系列带有名称的列和行数据。但是,视图并不在数据库中以储存的数据值形式存在。行和列数据来自定义视图的查询所引用基本表,并且在具体引用视图时动态生成。

视图使开发者只关心感兴趣的某些特定数据和所负责的特定任务,只能看到视图中所定义的数据,而不是视图所引用表中的数据,从而提高了数据库中数据的安全性。

视图有哪些特点?

视图的特点如下:

视图的列可以来自不同的表,是表的抽象和在逻辑意义上建立的新关系。

视图是由基本表(实表)产生的表(虚表)。

视图的建立和删除不影响基本表。

对视图内容的更新(添加,删除和修改)直接影响基本表。

当视图来自多个基本表时,不允许添加和删除数据。

视图是由基本表(实表)产生的表(虚表)。

对视图内容的更新(添加,删除和修改)直接影响基本表。

视图的操作包括创建视图,查看视图,删除视图和修改视图。

视图的使用场景有哪些?

视图根本用途:简化sql查询,提高开发效率。如果说还有另外一个用途那就是兼容老的表结构。

下面是视图的常见使用场景:

重用SQL语句;

简化复杂的SQL操作。在编写查询后,可以方便的重用它而不必知道它的基本查询细节;

使用表的组成部分而不是整个表;

保护数据。可以给用户授予表的特定部分的访问权限而不是整个表的访问权限;

更改数据格式和表示。视图可返回与底层表的表示和格式不同的数据。

简化复杂的SQL操作。在编写查询后,可以方便的重用它而不必知道它的基本查询细节;

保护数据。可以给用户授予表的特定部分的访问权限而不是整个表的访问权限;

视图的优点

  1. 查询简单化。视图能简化用户的操作
  2. 数据安全性。视图使用户能以多种角度看待同一数据,能够对机密数据提供安全保护
  3. 逻辑数据独立性。视图对重构数据库提供了一定程度的逻辑独立性

视图的缺点

性能。数据库必须把视图的查询转化成对基本表的查询,如果这个视图是由一个复杂的多表查询所定义,那么,即使是视图的一个简单查询,数据库也把它变成一个复杂的结合体,需要花费一定的时间。

修改限制。当用户试图修改视图的某些行时,数据库必须把它转化为对基本表的某些行的修改。事实上,当从视图中插入或者删除时,情况也是这样。对于简单视图来说,这是很方便的,但是,对于比较复杂的视图,可能是不可修改的
这些视图有如下特征:1.有UNIQUE等集合操作符的视图。2.有GROUP BY子句的视图。3.有诸如AVG\SUM\MAX等聚合函数的视图。 4.使用DISTINCT关键字的视图。5.连接表的视图(其中有些例外)

修改限制。当用户试图修改视图的某些行时,数据库必须把它转化为对基本表的某些行的修改。事实上,当从视图中插入或者删除时,情况也是这样。对于简单视图来说,这是很方便的,但是,对于比较复杂的视图,可能是不可修改的

什么是游标?

游标是系统为用户开设的一个数据缓冲区,存放SQL语句的执行结果,每个游标区都有一个名字。用户可以通过游标逐一获取记录并赋给主变量,交由主语言进一步处理。

存储过程与函数

什么是存储过程?有哪些优缺点?

存储过程是一个预编译的SQL语句,优点是允许模块化的设计,就是说只需要创建一次,以后在该程序中就可以调用多次。如果某次操作需要执行多次SQL,使用存储过程比单纯SQL语句执行要快。

优点

1)存储过程是预编译过的,执行效率高。

2)存储过程的代码直接存放于数据库中,通过存储过程名直接调用,减少网络通讯。

3)安全性高,执行存储过程需要有一定权限的用户。

4)存储过程可以重复使用,减少数据库开发人员的工作量。

缺点

1)调试麻烦,但是用 PL/SQL Developer 调试很方便!弥补这个缺点。

2)移植问题,数据库端代码当然是与数据库相关的。但是如果是做工程型项目,基本不存在移植问题。

3)重新编译问题,因为后端代码是运行前编译的,如果带有引用关系的对象发生改变时,受影响的存储过程、包将需要重新编译(不过也可以设置成运行时刻自动编译)。

4)如果在一个程序系统中大量的使用存储过程,到程序交付使用的时候随着用户需求的增加会导致数据结构的变化,接着就是系统的相关问题了,最后如果用户想维护该系统可以说是很难很难、而且代价是空前的,维护起来更麻烦。

触发器

什么是触发器?触发器的使用场景有哪些?

触发器是用户定义在关系表上的一类由事件驱动的特殊的存储过程。触发器是指一段代码,当触发某个事件时,自动执行这些代码。

使用场景

  • 可以通过数据库中的相关表实现级联更改。
  • 实时监控某张表中的某个字段的更改而需要做出相应的处理。
  • 例如可以生成某些业务的编号。
  • 注意不要滥用,否则会造成数据库及应用程序的维护困难。
  • 大家需要牢记以上基础知识点,重点是理解数据类型CHAR和VARCHAR的差异,表存储引擎InnoDB和MyISAM的区别。

MySQL中都有哪些触发器?

在MySQL数据库中有如下六种触发器:

  • Before Insert
  • After Insert
  • Before Update
  • After Update
  • Before Delete
  • After Delete

常用SQL语句

SQL语句主要分为哪几类

数据定义语言DDL(Data Ddefinition Language)CREATE,DROP,ALTER

主要为以上操作 即对逻辑结构等有操作的,其中包括表结构,视图和索引。

数据查询语言DQL(Data Query Language)SELECT

这个较为好理解 即查询操作,以select关键字。各种简单查询,连接查询等 都属于DQL。

数据操纵语言DML(Data Manipulation Language)INSERT,UPDATE,DELETE

主要为以上操作 即对数据进行操作的,对应上面所说的查询操作 DQL与DML共同构建了多数初级程序员常用的增删改查操作。而查询是较为特殊的一种 被划分到DQL中。

数据控制功能DCL(Data Control Language)GRANT,REVOKE,COMMIT,ROLLBACK

主要为以上操作 即对数据库安全性完整性等有操作的,可以简单的理解为权限控制等。

超键、候选键、主键、外键分别是什么?

  • 超键:在关系中能唯一标识元组的属性集称为关系模式的超键。一个属性可以为作为一个超键,多个属性组合在一起也可以作为一个超键。超键包含候选键和主键。
  • 候选键:是最小超键,即没有冗余元素的超键。
  • 主键:数据库表中对储存数据对象予以唯一和完整标识的数据列或属性的组合。一个数据列只能有一个主键,且主键的取值不能缺失,即不能为空值(Null)。
  • 外键:在一个表中存在的另一个表的主键称此表的外键。

SQL 约束有哪几种?

SQL 约束有哪几种?

  • NOT NULL: 用于控制字段的内容一定不能为空(NULL)。
  • UNIQUE: 控件字段内容不能重复,一个表允许有多个 Unique 约束。
  • PRIMARY KEY: 也是用于控件字段内容不能重复,但它在一个表只允许出现一个。
  • FOREIGN KEY: 用于预防破坏表之间连接的动作,也能防止非法数据插入外键列,因为它必须是它指向的那个表中的值之一。
  • CHECK: 用于控制字段的值范围。

六种关联查询

  • 交叉连接(CROSS JOIN)
  • 内连接(INNER JOIN)
  • 外连接(LEFT JOIN/RIGHT JOIN)
  • 联合查询(UNION与UNION ALL)
  • 全连接(FULL JOIN)
  • 交叉连接(CROSS JOIN)
1
SELECT * FROM A,B(,C)或者SELECT * FROM A CROSS JOIN B (CROSS JOIN C)#没有任何关联条件,结果是笛卡尔积,结果集会很大,没有意义,很少使用内连接(INNER JOIN)SELECT * FROM A,B WHERE A.id=B.id或者SELECT * FROM A INNER JOIN B ON A.id=B.id多表中同时符合某种条件的数据记录的集合,INNER JOIN可以缩写为JOIN

内连接分为三类

  • 等值连接:ON A.id=B.id
  • 不等值连接:ON A.id > B.id
  • 自连接:SELECT * FROM A T1 INNER JOIN A T2 ON T1.id=T2.pid

外连接(LEFT JOIN/RIGHT JOIN)

  • 左外连接:LEFT OUTER JOIN, 以左表为主,先查询出左表,按照ON后的关联条件匹配右表,没有匹配到的用NULL填充,可以简写成LEFT JOIN
  • 右外连接:RIGHT OUTER JOIN, 以右表为主,先查询出右表,按照ON后的关联条件匹配左表,没有匹配到的用NULL填充,可以简写成RIGHT JOIN

联合查询(UNION与UNION ALL)

1
SELECT * FROM A UNION SELECT * FROM B UNION ...
  • 就是把多个结果集集中在一起,UNION前的结果为基准,需要注意的是联合查询的列数要相等,相同的记录行会合并
  • 如果使用UNION ALL,不会合并重复的记录行
  • 效率 UNION 高于 UNION ALL

全连接(FULL JOIN)

  • MySQL不支持全连接
  • 可以使用LEFT JOIN 和UNION和RIGHT JOIN联合使用
1
SELECT * FROM A LEFT JOIN B ON A.id=B.id UNIONSELECT * FROM A RIGHT JOIN B ON A.id=B.id

表连接面试题

有2张表,1张R、1张S,R表有ABC三列,S表有CD两列,表中各有三条记录。

R表

A B C
a1 b1 c1
a2 b2 c2
a3 b3 c3

S表

C D
c1 d1
c2 d2
c4 d3
  1. 交叉连接(笛卡尔积):

select r.*,s.* from r,s

A B C C D
a1 b1 c1 c1 d1
a2 b2 c2 c1 d1
a3 b3 c3 c1 d1
a1 b1 c1 c2 d2
a2 b2 c2 c2 d2
a3 b3 c3 c2 d2
a1 b1 c1 c4 d3
a2 b2 c2 c4 d3
a3 b3 c3 c4 d3

内连接结果:
select r.*,s.* from r inner join s on r.c=s.c

select r.*,s.* from r inner join s on r.c=s.c

A B C C D
a1 b1 c1 c1 d1
a2 b2 c2 c2 d2

左连接结果:
select r.*,s.* from r left join s on r.c=s.c

select r.*,s.* from r left join s on r.c=s.c

A B C C D
a1 b1 c1 c1 d1
a2 b2 c2 c2 d2
a3 b3 c3

右连接结果:
select r.*,s.* from r right join s on r.c=s.c

select r.*,s.* from r right join s on r.c=s.c

A B C C D
a1 b1 c1 c1 d1
a2 b2 c2 c2 d2
c4 d3

全表连接的结果(MySql不支持,Oracle支持):
select r.*,s.* from r full join s on r.c=s.c

select r.*,s.* from r full join s on r.c=s.c

A B C C D
a1 b1 c1 c1 d1
a2 b2 c2 c2 d2
a3 b3 c3
c4 d3

什么是子查询

条件:一条SQL语句的查询结果做为另一条查询语句的条件或查询结果
嵌套:多条SQL语句嵌套使用,内部的SQL查询语句称为子查询。
嵌套:多条SQL语句嵌套使用,内部的SQL查询语句称为子查询。

子查询的三种情况

  1. 子查询是单行单列的情况:结果集是一个值,父查询使用:=、 <、 > 等运算符
1
2
-- 查询工资最高的员工是谁? 
select * from employee where salary=(select max(salary) from employee);
  1. 子查询是多行单列的情况:结果集类似于一个数组,父查询使用:in 运算符
1
2
-- 查询工资最高的员工是谁? 
select * from employee where salary=(select max(salary) from employee);
  1. 子查询是多行多列的情况:结果集类似于一张虚拟表,不能用于where条件,用于select子句中做为子表
1
2
3
4
5
6
-- 1) 查询出2011年以后入职的员工信息
-- 2) 查询所有的部门信息,与上面的虚拟表中的信息比对,找出所有部门ID相等的员工。
select * from dept d, (select * from employee where join_date > '2011-1-1') e where e.dept_id = d.id;

-- 使用表连接:
select d.*, e.* from dept d inner join employee e on d.id = e.dept_id where e.join_date > '2011-1-1'

mysql中 in 和 exists 区别

mysql中的in语句是把外表和内表作hash 连接,而exists语句是对外表作loop循环,每次loop循环再对内表进行查询。一直大家都认为exists比in语句的效率要高,这种说法其实是不准确的。这个是要区分环境的。

  1. 如果查询的两个表大小相当,那么用in和exists差别不大。
  2. 如果两个表中一个较小,一个是大表,则子查询表大的用exists,子查询表小的用in。
  3. not in 和not exists:如果查询语句使用了not in,那么内外表都进行全表扫描,没有用到索引;而not extsts的子查询依然能用到表上的索引。所以无论那个表大,用not exists都比not in要快。

varchar与char的区别

char的特点

char表示定长字符串,长度是固定的;

如果插入数据的长度小于char的固定长度时,则用空格填充;

因为长度固定,所以存取速度要比varchar快很多,甚至能快50%,但正因为其长度固定,所以会占据多余的空间,是空间换时间的做法;

对于char来说,最多能存放的字符个数为255,和编码无关

如果插入数据的长度小于char的固定长度时,则用空格填充;

对于char来说,最多能存放的字符个数为255,和编码无关

varchar的特点

varchar表示可变长字符串,长度是可变的;

插入的数据是多长,就按照多长来存储;

varchar在存取方面与char相反,它存取慢,因为长度不固定,但正因如此,不占据多余的空间,是时间换空间的做法;

对于varchar来说,最多能存放的字符个数为65532

插入的数据是多长,就按照多长来存储;

对于varchar来说,最多能存放的字符个数为65532

总之,结合性能角度(char更快)和节省磁盘空间角度(varchar更小),具体情况还需具体来设计数据库才是妥当的做法。

varchar(50)中50的涵义

最多存放50个字符,varchar(50)和(200)存储hello所占空间一样,但后者在排序时会消耗更多内存,因为order by col采用fixed_length计算col长度(memory引擎也一样)。在早期 MySQL 版本中, 50 代表字节数,现在代表字符数。

int(20)中20的涵义

是指显示字符的长度。20表示最大显示宽度为20,但仍占4字节存储,存储范围不变;

不影响内部存储,只是影响带 zerofill 定义的 int 时,前面补多少个 0,易于报表展示

mysql为什么这么设计

对大多数应用没有意义,只是规定一些工具用来显示字符的个数;int(1)和int(20)存储和计算均一样;

mysql中int(10)和char(10)以及varchar(10)的区别

int(10)的10表示显示的数据的长度,不是存储数据的大小;chart(10)和varchar(10)的10表示存储数据的大小,即表示存储多少个字符。
int(10) 10位的数据长度 9999999999,占32个字节,int型4位
char(10) 10位固定字符串,不足补空格 最多10个字符
varchar(10) 10位可变字符串,不足补空格 最多10个字符

char(10)表示存储定长的10个字符,不足10个就用空格补齐,占用更多的存储空间

varchar(10)表示存储10个变长的字符,存储多少个就是多少个,空格也按一个字符存储,这一点是和char(10)的空格不同的,char(10)的空格表示占位不算一个字符

int(10) 10位的数据长度 9999999999,占32个字节,int型4位
char(10) 10位固定字符串,不足补空格 最多10个字符
varchar(10) 10位可变字符串,不足补空格 最多10个字符

varchar(10)表示存储10个变长的字符,存储多少个就是多少个,空格也按一个字符存储,这一点是和char(10)的空格不同的,char(10)的空格表示占位不算一个字符

FLOAT和DOUBLE的区别是什么?

  • FLOAT类型数据可以存储至多8位十进制数,并在内存中占4字节。
  • DOUBLE类型数据可以存储至多18位十进制数,并在内存中占8字节。

drop、delete与truncate的区别

三者都表示删除,但是三者有一些差别:

Delete Truncate Drop
类型 属于DML 属于DDL 属于DDL
回滚 可回滚 不可回滚 不可回滚
删除内容 表结构还在,删除表的全部或者一部分数据行 表结构还在,删除表中的所有数据 从数据库中删除表,所有的数据行,索引和权限也会被删除
删除速度 删除速度慢,需要逐行删除 删除速度快 删除速度最快

因此,在不再需要一张表的时候,用drop;在想删除部分数据行时候,用delete;在保留表而删除所有数据的时候用truncate。

UNION与UNION ALL的区别?

  • 如果使用UNION ALL,不会合并重复的记录行
  • 效率 UNION 高于 UNION ALL

SQL优化

如何定位及优化SQL语句的性能问题?创建的索引有没有被使用到?或者说怎么才可以知道这条语句运行很慢的原因?

对于低性能的SQL语句的定位,最重要也是最有效的方法就是使用执行计划,MySQL提供了explain命令来查看语句的执行计划。 我们知道,不管是哪种数据库,或者是哪种数据库引擎,在对一条SQL语句进行执行的过程中都会做很多相关的优化,对于查询语句,最重要的优化方式就是使用索引。 而执行计划,就是显示数据库引擎对于SQL语句的执行的详细情况,其中包含了是否使用索引,使用什么索引,使用的索引的相关信息等

在这里插入图片描述

概要描述:

  • id:选择标识符

  • select_type:表示查询的类型。

  • table:输出结果集的表

  • partitions:匹配的分区

  • type:表示表的连接类型

  • possible_keys:表示查询时,可能使用的索引

  • key:表示实际使用的索引

  • key_len:索引字段的长度

  • ref:列与索引的比较

  • rows:扫描出的行数(估算的行数)

  • filtered:按表条件过滤的行百分比

  • Extra:执行情况的描述和说明

  • id: 执行计划包含的信息 id 有一组数字组成。表示一个查询中各个子查询的执行顺序;

  • id相同执行顺序由上至下。

  • id不同,id值越大优先级越高,越先被执行。

  • id为null时表示一个结果集,不需要使用它查询,常出现在包含union等查询语句中。

  • select_type 每个子查询的查询类型,一些常见的查询类型。

    id select_type description
    1 SIMPLE 简单SELECT,不包含任何子查询或union等查询
    2 PRIMARY 包含子查询最外层查询就显示为 PRIMARY
    3 SUBQUERY 子查询中的第一个SELECT,结果不依赖于外部查询,在select或 where字句中包含的查询
    4 DERIVED 派生表的SELECT, FROM子句的子查询
    5 UNION 出现在union后的查询语句中
    6 UNION RESULT 从UNION中获取结果集,例如上文的第三个例子
    7 DEPENDENT UNION UNION中的第二个或后面的SELECT语句,取决于外面的查询
    8 DEPENDENT SUBQUERY 子查询中的第一个SELECT,依赖于外部查询
    9 UNCACHEABLE SUBQUERY 一个子查询的结果不能被缓存,必须重新评估外链接的第一行
  • table 查询的数据表,当从衍生表中查数据时会显示 x 表示对应的执行计划id partitions 表分区、表创建的时候可以指定通过那个列进行表分区。 举个例子:

1
2
3
4
5
6
create table tmp (
id int unsigned not null AUTO_INCREMENT,
name varchar(255),
PRIMARY KEY (id)
) engine = innodb
partition by key (id) partitions 5;
  • type(非常重要,可以看到有没有走索引) 对表访问方式,表示MySQL在表中找到所需行的方式,又称“访问类型”。
    常用的类型有: ALL、index、range、 ref、eq_ref、const、system、NULL(从左到右,性能从差到好)

    • ALL 扫描全表数据 Full Table Scan, MySQL将遍历全表以找到匹配的行
    • index 遍历索引 Full Index Scan,index与ALL区别为index类型只遍历索引树
    • range 索引范围查找 只检索给定范围的行,使用一个索引来选择行
    • ref 使用非唯一索引查找数据,表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值
    • eq_ref 在join查询中使用PRIMARY KEY or UNIQUE NOT NULL索引关联。类似ref,区别就在使用的索引是唯一索引,对于每个索引键值,表中只有一条记录匹配,简单来说,就是多表连接中使用primary key或者 unique key作为关联条件
    • const、system: 当MySQL对查询某部分进行优化,并转换为一个常量时,使用这些类型访问。如将主键置于where列表中,MySQL就能将该查询转换为一个常量,system是const类型的特例,当查询的表只有一行的情况下,使用system
    • NULL: MySQL在优化过程中分解语句,执行时甚至不用访问表或索引,例如从一个索引列里选取最小值可以通过单独索引查找完成。
    • index_subquery 在子查询中使用 ref
    • unique_subquery 在子查询中使用 eq_ref
    • ref_or_null 对Null进行索引的优化的 ref
    • fulltext 使用全文索引
  • possible_keys 可能使用的索引,注意不一定会使用。查询涉及到的字段上若存在索引,则该索引将被列出来。当该列为 NULL时就要考虑当前的SQL是否需要优化了。

该列完全独立于EXPLAIN输出所示的表的次序。这意味着在possible_keys中的某些键实际上不能按生成的表次序使用。
如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查WHERE子句看是否它引用某些列或适合索引的列来提高你的查询性能。如果是这样,创造一个适当的索引并且再次用EXPLAIN检查查询

  • key 显示MySQL在查询中实际使用的索引,若没有使用索引,显示为NULL。
    如果没有选择索引,键是NULL。要想强制MySQL使用或忽视possible_keys列中的索引,在查询中使用FORCE INDEX、USE INDEX或者IGNORE INDEX。

查询中若使用了覆盖索引(覆盖索引:索引的数据覆盖了需要查询的所有数据),则该索引仅出现在key列表中

  • key_length 索引长度
    表示索引中使用的字节数,可通过该列计算查询中使用的索引的长度(key_len显示的值为索引字段的最大可能长度,并非实际使用长度,即key_len是根据表定义计算而得,不是通过表内检索出的)

不损失精确性的情况下,长度越短越好

  • ref 列与索引的比较,表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值

  • rows 估算出结果集行数,表示MySQL根据表统计信息及索引选用情况,估算的找到所需的记录所需要读取的行数

  • extra 的信息非常丰富,常见的有:

    1. Using index 使用覆盖索引
    2. Using where 使用了用where子句来过滤结果集
    3. Using filesort 当Query中包含 order by 操作,而且无法利用索引完成的排序操作称为“文件排序”,使用文件排序,使用非索引列进行排序时出现,非常消耗性能,尽量优化。
    4. Using temporary 使用了临时表 表示MySQL需要使用临时表来存储结果集,常见于排序和分组查询,常见 group by 、order bysql,优化的目标可以参考阿里开发手册
    5. Using join buffer:强调了在获取连接条件时没有使用索引,并且需要连接缓冲区来存储中间结果。如果出现了这个值,那应该注意,根据查询的具体情况可能需要添加索引来改进能。
    6. Impossible where:这个值强调了where语句会导致没有符合条件的行(通过收集统计信息不可能存在结果)。
    7. Select tables optimized away:这个值意味着仅通过使用索引,优化器可能仅从聚合函数结果中返回一行
    8. No tables used:Query语句中使用from dual 或不含任何from子句

【推荐】SQL性能优化的目标:至少要达到 range 级别,要求是ref级别,如果可以是const最好。
说明:

  • 1) const 单表中最多只有一个匹配行(主键或者唯一索引),在优化阶段即可读取到数据。
  • 2) ref 指的是使用普通的索引(normal index)。
  • 3) range 对索引进行范围检索。
    反例:explain表的结果,type=index,索引物理文件全扫描,速度非常慢,这个index级别比较range还低,与全表扫描是小巫见大巫。

https://www.cnblogs.com/tufujie/p/9413852.html

SQL的生命周期?

  1. 应用服务器与数据库服务器建立一个连接

  2. 数据库进程拿到请求sql

  3. 解析并生成执行计划,执行

  4. 读取数据到内存并进行逻辑处理

  5. 通过步骤一的连接,发送结果到客户端

  6. 关掉连接,释放资源

    在这里插入图片描述

大表数据查询,怎么优化

  1. 优化shema、sql语句+索引;
  2. 第二加缓存,memcached, redis;
  3. 主从复制,读写分离;
  4. 垂直拆分,根据你模块的耦合度,将一个大的系统分为多个小的系统,也就是分布式系统;
  5. 水平切分,针对数据量大的表,这一步最麻烦,最能考验技术水平,要选择一个合理的sharding key, 为了有好的查询效率,表结构也要改动,做一定的冗余,应用也要改,sql中尽量带sharding key,将数据定位到限定的表上去查,而不是扫描全部的表;

超大分页怎么处理?

超大的分页一般从两个方向上来解决.

  • 数据库层面,这也是我们主要集中关注的(虽然收效没那么大),类似于select * from table where age > 20 limit 1000000,10这种查询其实也是有可以优化的余地的. 这条语句需要load1000000数据然后基本上全部丢弃,只取10条当然比较慢. 当时我们可以修改为select * from table where id in (select id from table where age > 20 limit 1000000,10).这样虽然也load了一百万的数据,但是由于索引覆盖,要查询的所有字段都在索引中,所以速度会很快. 同时如果ID连续的好,我们还可以select * from table where id > 1000000 limit 10,效率也是不错的,优化的可能性有许多种,但是核心思想都一样,就是减少load的数据.
  • 从需求的角度减少这种请求…主要是不做类似的需求(直接跳转到几百万页之后的具体某一页.只允许逐页查看或者按照给定的路线走,这样可预测,可缓存)以及防止ID泄漏且连续被人恶意攻击.

解决超大分页,其实主要是靠缓存,可预测性的提前查到内容,缓存至redis等k-V数据库中,直接返回即可.

在阿里巴巴《Java开发手册》中,对超大分页的解决办法是类似于上面提到的第一种.

【推荐】利用延迟关联或者子查询优化超多分页场景。

说明:MySQL并不是跳过offset行,而是取offset+N行,然后返回放弃前offset行,返回N行,那当offset特别大的时候,效率就非常的低下,要么控制返回的总页数,要么对超过特定阈值的页数进行SQL改写。

正例:先快速定位需要获取的id段,然后再关联:

SELECT a.* FROM 表1 a, (select id from 表1 where 条件 LIMIT 100000,20 ) b where a.id=b.id

mysql 分页

LIMIT 子句可以被用于强制 SELECT 语句返回指定的记录数。LIMIT 接受一个或两个数字参数。参数必须是一个整数常量。如果给定两个参数,第一个参数指定第一个返回记录行的偏移量,第二个参数指定返回记录行的最大数目。初始记录行的偏移量是 0(而不是 1)

1
mysql> SELECT * FROM table LIMIT 5,10; // 检索记录行 6-15

为了检索从某一个偏移量到记录集的结束所有的记录行,可以指定第二个参数为 -1:

1
mysql> SELECT * FROM table LIMIT 95,-1; // 检索记录行 96-last.

如果只给定一个参数,它表示返回最大的记录行数目:

1
mysql> SELECT * FROM table LIMIT 5; //检索前 5 个记录行

换句话说,LIMIT n 等价于 LIMIT 0,n。

慢查询日志

用于记录执行时间超过某个临界值的SQL日志,用于快速定位慢查询,为我们的优化做参考。

开启慢查询日志

配置项:slow_query_log

可以使用show variables like ‘slov_query_log’查看是否开启,如果状态值为OFF,可以使用set GLOBAL slow_query_log = on来开启,它会在datadir下产生一个xxx-slow.log的文件。

设置临界时间

配置项:long_query_time

查看:show VARIABLES like 'long_query_time',单位秒

设置:set long_query_time=0.5

实操时应该从长时间设置到短的时间,即将最慢的SQL优化掉

查看日志,一旦SQL超过了我们设置的临界时间就会被记录到xxx-slow.log

关心过业务系统里面的sql耗时吗?统计过慢查询吗?对慢查询都怎么优化过?

在业务系统中,除了使用主键进行的查询,其他的我都会在测试库上测试其耗时,慢查询的统计主要由运维在做,会定期将业务中的慢查询反馈给我们。

慢查询的优化首先要搞明白慢的原因是什么? 是查询条件没有命中索引?是load了不需要的数据列?还是数据量太大?

所以优化也是针对这三个方向来的,

  • 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。
  • 分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。
  • 如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。

为什么要尽量设定一个主键?

主键是数据库确保数据行在整张表唯一性的保障,即使业务上本张表没有主键,也建议添加一个自增长的ID列作为主键。设定了主键之后,在后续的删改查的时候可能更加快速以及确保操作数据范围安全。

主键使用自增ID还是UUID?

推荐使用自增ID,不要使用UUID。

因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。

总之,在数据量大一些的情况下,用自增主键性能会好一些。

关于主键是聚簇索引,如果没有主键,InnoDB会选择一个唯一键来作为聚簇索引,如果没有唯一键,会生成一个隐式的主键。

段为什么要求定义为not null?

null值会占用更多的字节,且会在程序中造成很多与预期不符的情况。

如果要存储用户的密码散列,应该使用什么字段进行存储?

密码散列,盐,用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。

优化查询过程中的数据访问

  • 访问数据太多导致查询性能下降
  • 确定应用程序是否在检索大量超过需要的数据,可能是太多行或列
  • 确认MySQL服务器是否在分析大量不必要的数据行
  • 避免犯如下SQL语句错误
  • 查询不需要的数据。解决办法:使用limit解决
  • 多表关联返回全部列。解决办法:指定列名
  • 总是返回全部列。解决办法:避免使用SELECT *
  • 重复查询相同的数据。解决办法:可以缓存数据,下次直接读取缓存
  • 是否在扫描额外的记录。解决办法:
  • 使用explain进行分析,如果发现查询需要扫描大量的数据,但只返回少数的行,可以通过如下技巧去优化:
  • 使用索引覆盖扫描,把所有的列都放到索引中,这样存储引擎不需要回表获取对应行就可以返回结果。
  • 改变数据库和表的结构,修改数据表范式
  • 重写SQL语句,让优化器可以以更优的方式执行查询。

优化长难的查询语句

  • 一个复杂查询还是多个简单查询
  • MySQL内部每秒能扫描内存中上百万行数据,相比之下,响应数据给客户端就要慢得多
  • 使用尽可能小的查询是好的,但是有时将一个大的查询分解为多个小的查询是很有必要的。
  • 切分查询
  • 将一个大的查询分为多个小的相同的查询
  • 一次性删除1000万的数据要比一次删除1万,暂停一会的方案更加损耗服务器开销。
  • 分解关联查询,让缓存的效率更高。
  • 执行单个查询可以减少锁的竞争。
  • 在应用层做关联更容易对数据库进行拆分。
  • 查询效率会有大幅提升。
  • 较少冗余记录的查询。

优化特定类型的查询语句

  • count(*)会忽略所有的列,直接统计所有列数,不要使用count(列名)
  • MyISAM中,没有任何where条件的count(*)非常快。
  • 当有where条件时,MyISAM的count统计不一定比其它引擎快。
  • 可以使用explain查询近似值,用近似值替代count(*)
  • 增加汇总表
  • 使用缓存

优化关联查询

  • 确定ON或者USING子句中是否有索引。
  • 确保GROUP BY和ORDER BY只有一个表中的列,这样MySQL才有可能使用索引。

优化子查询

  • 用关联查询替代
  • 优化GROUP BY和DISTINCT
  • 这两种查询据可以使用索引来优化,是最有效的优化方法
  • 关联查询中,使用标识列分组的效率更高
  • 如果不需要ORDER BY,进行GROUP BY时加ORDER BY NULL,MySQL不会再进行文件排序。
  • WITH ROLLUP超级聚合,可以挪到应用程序处理

优化LIMIT分页

  • LIMIT偏移量大的时候,查询效率较低
  • 可以记录上次查询的最大ID,下次查询时直接根据该ID来查询

优化UNION查询

  • UNION ALL的效率高于UNION

优化WHERE子句

解题方法

对于此类考题,先说明如何定位低效SQL语句,然后根据SQL语句可能低效的原因做排查,先从索引着手,如果索引没有问题,考虑以上几个方面,数据访问的问题,长难查询句的问题还是一些特定类型优化的问题,逐一回答。

SQL语句优化的一些方法?

  • 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
  • 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
1
2
3
select id from t where num is null
-- 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=
  • 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用索引而进行全表扫描。
  • 4.应尽量避免在 where 子句中使用or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
1
2
3
select id from t where num=10 or num=20
-- 可以这样查询:
select id from t where num=10 union all select id from t where num=20
  • 5.in 和 not in 也要慎用,否则会导致全表扫描,如:
1
2
3
select id from t where num in(1,2,3) 
-- 对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
  • 6.下面的查询也将导致全表扫描:select id from t where name like ‘%李%’若要提高效率,可以考虑全文检索。
  • 7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
1
2
3
select id from t where num=@num
-- 可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
  • 8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
1
2
3
select id from t where num/2=100
-- 应改为:
select id from t where num=100*2
  • 9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
1
2
3
select id from t where substring(name,1,3)=’abc’
-- name以abc开头的id应改为:
select id from t where name like ‘abc%’
  • 10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

数据库优化

为什么要优化

  • 系统的吞吐量瓶颈往往出现在数据库的访问速度上
  • 随着应用程序的运行,数据库的中的数据会越来越多,处理时间会相应变慢
  • 数据是存放在磁盘上的,读写速度无法和内存相比

优化原则:减少系统瓶颈,减少资源占用,增加系统的反应速度。

数据库结构优化

一个好的数据库设计方案对于数据库的性能往往会起到事半功倍的效果。

需要考虑数据冗余、查询和更新的速度、字段的数据类型是否合理等多方面的内容。

将字段很多的表分解成多个表

对于字段较多的表,如果有些字段的使用频率很低,可以将这些字段分离出来形成新表。

因为当一个表的数据量很大时,会由于使用频率低的字段的存在而变慢。

增加中间表

对于需要经常联合查询的表,可以建立中间表以提高查询效率。

通过建立中间表,将需要通过联合查询的数据插入到中间表中,然后将原来的联合查询改为对中间表的查询。

增加冗余字段

设计数据表时应尽量遵循范式理论的规约,尽可能的减少冗余字段,让数据库设计看起来精致、优雅。但是,合理的加入冗余字段可以提高查询速度。

表的规范化程度越高,表和表之间的关系越多,需要连接查询的情况也就越多,性能也就越差。

注意:

冗余字段的值在一个表中修改了,就要想办法在其他表中更新,否则就会导致数据不一致的问题。

MySQL数据库cpu飙升到500%的话他怎么处理?

当 cpu 飙升到 500%时,先用操作系统命令 top 命令观察是不是 mysqld 占用导致的,如果不是,找出占用高的进程,并进行相关处理。

如果是 mysqld 造成的, show processlist,看看里面跑的 session 情况,是不是有消耗资源的 sql 在运行。找出消耗高的 sql,看看执行计划是否准确, index 是否缺失,或者实在是数据量太大造成。

一般来说,肯定要 kill 掉这些线程(同时观察 cpu 使用率是否下降),等进行相应的调整(比如说加索引、改 sql、改内存参数)之后,再重新跑这些 SQL。

也有可能是每个 sql 消耗资源并不多,但是突然之间,有大量的 session 连进来导致 cpu 飙升,这种情况就需要跟应用一起来分析为何连接数会激增,再做出相应的调整,比如说限制连接数等

大表怎么优化?某个表有近千万数据,CRUD比较慢,如何优化?分库分表了是怎么做的?分表分库了有什么问题?有用到中间件么?他们的原理知道么?

当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下:

  1. 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。;
  2. 读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读;
  3. 缓存: 使用MySQL的缓存,另外对重量级、更新少的数据可以考虑使用应用级别的缓存;

还有就是通过分库分表的方式进行优化,主要有垂直分表和水平分表

垂直分区:

  • 根据数据库里面数据表的相关性进行拆分。 例如,用户表中既有用户的登录信息又有用户的基本信息,可以将用户表拆分成两个单独的表,甚至放到单独的库做分库。

  • 简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。 如下图所示,这样来说大家应该就更容易理解了。

    img
  • 垂直拆分的优点: 可以使得行数据变小,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区可以简化表的结构,易于维护。

  • 垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起Join操作,可以通过在应用层进行Join来解决。此外,垂直分区会让事务变得更加复杂;

垂直分表

  • 把主键和一些列放在一个表,然后把主键和另外的列放在另一个表中

    img
  • 适用场景

  1. 如果一个表中某些列常用,另外一些列不常用
  2. 可以使数据行变小,一个数据页能存储更多数据,查询时减少I/O次数
    缺点:
  3. 有些分表的策略基于应用层的逻辑算法,一旦逻辑算法改变,整个分表逻辑都会改变,扩展性较差
  4. 对于应用层来说,逻辑算法增加开发成本
  5. 管理冗余列,查询所有数据需要join操作

水平分区:

  • 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。 水平拆分可以支撑非常大的数据量。
    水平拆分是指数据表行的拆分,表的行数超过200万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放。举个例子:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。数据库水平拆分

水品拆分可以支持非常大的数据量。需要注意的一点是:分表仅仅是解决了单一表数据过大的问题,但由于表的数据还是在同一台机器上,其实对于提升MySQL并发能力没有什么意义,所以 水平拆分最好分库
水平拆分能够 支持非常大的数据量存储,应用端改造也少,但 分片事务难以解决 ,跨界点Join性能较差,逻辑复杂。
《Java工程师修炼之道》的作者推荐 尽量不要对数据进行分片,因为拆分会带来逻辑、部署、运维的各种复杂度 ,一般的数据表在优化得当的情况下支撑千万以下的数据量是没有太大问题的。如果实在要分片,尽量选择客户端分片架构,这样可以减少一次和中间件的网络I/O。

水平分表:
表很大,分割后可以降低在查询时需要读的数据和索引的页数,同时也降低了索引的层数,提高查询次数
img

适用场景

  1. 表中的数据本身就有独立性,例如表中分表记录各个地区的数据或者不同时期的数据,特别是有些数据常用,有些不常用。
  2. 需要把数据存放在多个介质上。

水平切分的缺点

  1. 给应用增加复杂度,通常查询时需要多个表名,查询所有数据都需UNION操作
  2. 在许多数据库应用中,这种复杂度会超过它带来的优点,查询时会增加读一个索引层的磁盘次数

下面补充一下数据库分片的两种常见方案:

  1. 客户端代理: 分片逻辑在应用端,封装在jar包中,通过修改或者封装JDBC层来实现。 当当网的 Sharding-JDBC 、阿里的TDDL是两种比较常用的实现。
  2. 中间件代理: 在应用和数据中间加了一个代理层。分片逻辑统一维护在中间件服务中。 我们现在谈的 Mycat 、360的Atlas、网易的DDB等等都是这种架构的实现。

根据数据库里面数据表的相关性进行拆分。 例如,用户表中既有用户的登录信息又有用户的基本信息,可以将用户表拆分成两个单独的表,甚至放到单独的库做分库。

img

垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起Join操作,可以通过在应用层进行Join来解决。此外,垂直分区会让事务变得更加复杂;

img
缺点

保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。 水平拆分可以支撑非常大的数据量。

数据库水平拆分

水平拆分能够 支持非常大的数据量存储,应用端改造也少,但 分片事务难以解决 ,跨界点Join性能较差,逻辑复杂。

水平分表:

表很大,分割后可以降低在查询时需要读的数据和索引的页数,同时也降低了索引的层数,提高查询次数

水平切分的缺点

下面补充一下数据库分片的两种常见方案:

分库分表后面临的问题

事务支持 分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

跨库join
只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。 分库分表方案产品

跨节点的count,order by,group by以及聚合函数问题 这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。

数据迁移,容量规划,扩容等问题 来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。

ID问题

一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由. 一些常见的主键生成策略

跨库join

跨节点的count,order by,group by以及聚合函数问题 这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。

ID问题

UUID 使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。 Twitter的分布式自增ID算法Snowflake 在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位。

跨分片的排序分页
般来讲,分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。如下图所示:
在这里插入图片描述

般来讲,分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。如下图所示:

MySQL的复制原理以及流程

主从复制:将主数据库中的DDL和DML操作通过二进制日志(BINLOG)传输到从数据库上,然后将这些日志重新执行(重做);从而使得从数据库的数据与主数据库保持一致。

主从复制的作用

  1. 主数据库出现问题,可以切换到从数据库。
  2. 可以进行数据库层面的读写分离。
  3. 可以在从数据库上进行日常备份。

MySQL主从复制解决的问题

  • 数据分布:随意开始或停止复制,并在不同地理位置分布数据备份
  • 负载均衡:降低单个服务器的压力
  • 高可用和故障切换:帮助应用程序避免单点失败
  • 升级测试:可以用更高版本的MySQL作为从库

MySQL主从复制工作原理

  • 在主库上把数据更高记录到二进制日志
  • 从库将主库的日志复制到自己的中继日志
  • 从库读取中继日志的事件,将其重放到从库数据中

基本原理流程,3个线程以及之间的关联

:binlog线程——记录下所有改变了数据库数据的语句,放进master上的binlog中;

:io线程——在使用start slave 之后,负责从master上拉取 binlog 内容,放进自己的relay log中;

:sql执行线程——执行relay log中的语句;

复制过程

img

Binary log:主数据库的二进制日志

Relay log:从服务器的中继日志

第一步:master在每个事务更新数据完成之前,将该操作记录串行地写入到binlog文件中。

第二步:salve开启一个I/O Thread,该线程在master打开一个普通连接,主要工作是binlog dump process。如果读取的进度已经跟上了master,就进入睡眠状态并等待master产生新的事件。I/O线程最终的目的是将这些事件写入到中继日志中。

第三步:SQL Thread会读取中继日志,并顺序执行该日志中的SQL事件,从而与主数据库中的数据保持一致。

读写分离有哪些解决方案?

读写分离是依赖于主从复制,而主从复制又是为读写分离服务的。因为主从复制要求slave不能写只能读(如果对slave执行写操作,那么show slave status将会呈现Slave_SQL_Running=NO,此时你需要按照前面提到的手动同步一下slave)。

方案一

使用mysql-proxy代理

优点:直接实现读写分离和负载均衡,不用修改代码,master和slave用一样的帐号,mysql官方不建议实际生产中使用

缺点:降低性能, 不支持事务

方案二

使用AbstractRoutingDataSource+aop+annotation在dao层决定数据源。
如果采用了mybatis, 可以将读写分离放在ORM层,比如mybatis可以通过mybatis plugin拦截sql语句,所有的insert/update/delete都访问master库,所有的select 都访问salve库,这样对于dao层都是透明。 plugin实现时可以通过注解或者分析语句是读写方法来选定主从库。不过这样依然有一个问题, 也就是不支持事务, 所以我们还需要重写一下DataSourceTransactionManager, 将read-only的事务扔进读库, 其余的有读有写的扔进写库。

方案三

使用AbstractRoutingDataSource+aop+annotation在service层决定数据源,可以支持事务.

缺点:类内部方法通过this.xx()方式相互调用时,aop不会进行拦截,需进行特殊处理。

备份计划,mysqldump以及xtranbackup的实现原理

(1)备份计划

视库的大小来定,一般来说 100G 内的库,可以考虑使用 mysqldump 来做,因为 mysqldump更加轻巧灵活,备份时间选在业务低峰期,可以每天进行都进行全量备份(mysqldump 备份出来的文件比较小,压缩之后更小)。

100G 以上的库,可以考虑用 xtranbackup 来做,备份速度明显要比 mysqldump 要快。一般是选择一周一个全备,其余每天进行增量备份,备份时间为业务低峰期。

(2)备份恢复时间

物理备份恢复快,逻辑备份恢复慢

这里跟机器,尤其是硬盘的速率有关系,以下列举几个仅供参考

20G的2分钟(mysqldump)

80G的30分钟(mysqldump)

111G的30分钟(mysqldump)

288G的3小时(xtra)

3T的4小时(xtra)

逻辑导入时间一般是备份时间的5倍以上

(3)备份恢复失败如何处理

首先在恢复之前就应该做足准备工作,避免恢复的时候出错。比如说备份之后的有效性检查、权限检查、空间检查等。如果万一报错,再根据报错的提示来进行相应的调整。

(4)mysqldump和xtrabackup实现原理

mysqldump

mysqldump 属于逻辑备份。加入–single-transaction 选项可以进行一致性备份。后台进程会先设置 session 的事务隔离级别为 RR(SET SESSION TRANSACTION ISOLATION LEVELREPEATABLE READ),之后显式开启一个事务(START TRANSACTION /*!40100 WITH CONSISTENTSNAPSHOT */),这样就保证了该事务里读到的数据都是事务事务时候的快照。之后再把表的数据读取出来。如果加上–master-data=1 的话,在刚开始的时候还会加一个数据库的读锁(FLUSH TABLES WITH READ LOCK),等开启事务后,再记录下数据库此时 binlog 的位置(showmaster status),马上解锁,再读取表的数据。等所有的数据都已经导完,就可以结束事务

Xtrabackup:

xtrabackup 属于物理备份,直接拷贝表空间文件,同时不断扫描产生的 redo 日志并保存下来。最后完成 innodb 的备份后,会做一个 flush engine logs 的操作(老版本在有 bug,在5.6 上不做此操作会丢数据),确保所有的 redo log 都已经落盘(涉及到事务的两阶段提交

概念,因为 xtrabackup 并不拷贝 binlog,所以必须保证所有的 redo log 都落盘,否则可能会丢最后一组提交事务的数据)。这个时间点就是 innodb 完成备份的时间点,数据文件虽然不是一致性的,但是有这段时间的 redo 就可以让数据文件达到一致性(恢复的时候做的事

情)。然后还需要 flush tables with read lock,把 myisam 等其他引擎的表给备份出来,备份完后解锁。这样就做到了完美的热备。

数据表损坏的修复方式有哪些?

使用 myisamchk 来修复,具体步骤:

  • 1)修复前将mysql服务停止。
  • 2)打开命令行方式,然后进入到mysql的/bin目录。
  • 3)执行myisamchk –recover 数据库所在路径/*.MYI

使用repair table 或者 OPTIMIZE table命令来修复,REPAIR TABLE table_name 修复表 OPTIMIZE TABLE table_name 优化表 REPAIR TABLE 用于修复被破坏的表。 OPTIMIZE TABLE 用于回收闲置的数据库空间,当表上的数据行被删除时,所占据的磁盘空间并没有立即被回收,使用了OPTIMIZE TABLE命令后这些空间将被回收,并且对磁盘上的数据行进行重排(注意:是磁盘上,而非数据库)